用于预测金属有机框架形态的贝叶斯优化增强型神经网络:ZIF-8 合成案例研究

IF 2.7 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yuncheng Du , Dongping Du
{"title":"用于预测金属有机框架形态的贝叶斯优化增强型神经网络:ZIF-8 合成案例研究","authors":"Yuncheng Du ,&nbsp;Dongping Du","doi":"10.1016/j.matlet.2024.137738","DOIUrl":null,"url":null,"abstract":"<div><div>Zeolitic imidazolate framework-8 (ZIF-8) is a metal–organic framework (MOF) for diverse applications, including drug delivery and gas storage, where its morphology such as size significantly affects controlled drug release and gas absorption. Traditional trial-and-error methods for optimizing ZIF-8 morphology are time consuming and inefficient. To improve this, we integrate machine learning with experimental studies by developing a neural network model with hyperparameters optimized through Bayesian optimization. This model predicts how different experimental conditions such as precursor concentrations affect ZIF-8 morphology, thus setting the foundation for synthesis optimization that can improve morphology control.</div></div>","PeriodicalId":384,"journal":{"name":"Materials Letters","volume":"380 ","pages":"Article 137738"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bayesian optimization enhanced neural networks for predicting metal-organic framework morphology: A ZIF-8 synthesis case study\",\"authors\":\"Yuncheng Du ,&nbsp;Dongping Du\",\"doi\":\"10.1016/j.matlet.2024.137738\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Zeolitic imidazolate framework-8 (ZIF-8) is a metal–organic framework (MOF) for diverse applications, including drug delivery and gas storage, where its morphology such as size significantly affects controlled drug release and gas absorption. Traditional trial-and-error methods for optimizing ZIF-8 morphology are time consuming and inefficient. To improve this, we integrate machine learning with experimental studies by developing a neural network model with hyperparameters optimized through Bayesian optimization. This model predicts how different experimental conditions such as precursor concentrations affect ZIF-8 morphology, thus setting the foundation for synthesis optimization that can improve morphology control.</div></div>\",\"PeriodicalId\":384,\"journal\":{\"name\":\"Materials Letters\",\"volume\":\"380 \",\"pages\":\"Article 137738\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167577X24018780\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Letters","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167577X24018780","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

沸石咪唑啉框架-8(ZIF-8)是一种金属有机框架(MOF),可用于药物输送和气体储存等多种应用,其形态(如尺寸)对药物的可控释放和气体吸收有重大影响。优化 ZIF-8 形态的传统试错法既耗时又低效。为了改善这一问题,我们将机器学习与实验研究相结合,开发了一个神经网络模型,其超参数通过贝叶斯优化法进行了优化。该模型可预测不同实验条件(如前驱体浓度)对 ZIF-8 形态的影响,从而为合成优化奠定基础,改善形态控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bayesian optimization enhanced neural networks for predicting metal-organic framework morphology: A ZIF-8 synthesis case study
Zeolitic imidazolate framework-8 (ZIF-8) is a metal–organic framework (MOF) for diverse applications, including drug delivery and gas storage, where its morphology such as size significantly affects controlled drug release and gas absorption. Traditional trial-and-error methods for optimizing ZIF-8 morphology are time consuming and inefficient. To improve this, we integrate machine learning with experimental studies by developing a neural network model with hyperparameters optimized through Bayesian optimization. This model predicts how different experimental conditions such as precursor concentrations affect ZIF-8 morphology, thus setting the foundation for synthesis optimization that can improve morphology control.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Letters
Materials Letters 工程技术-材料科学:综合
CiteScore
5.60
自引率
3.30%
发文量
1948
审稿时长
50 days
期刊介绍: Materials Letters has an open access mirror journal Materials Letters: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review. Materials Letters is dedicated to publishing novel, cutting edge reports of broad interest to the materials community. The journal provides a forum for materials scientists and engineers, physicists, and chemists to rapidly communicate on the most important topics in the field of materials. Contributions include, but are not limited to, a variety of topics such as: • Materials - Metals and alloys, amorphous solids, ceramics, composites, polymers, semiconductors • Applications - Structural, opto-electronic, magnetic, medical, MEMS, sensors, smart • Characterization - Analytical, microscopy, scanning probes, nanoscopic, optical, electrical, magnetic, acoustic, spectroscopic, diffraction • Novel Materials - Micro and nanostructures (nanowires, nanotubes, nanoparticles), nanocomposites, thin films, superlattices, quantum dots. • Processing - Crystal growth, thin film processing, sol-gel processing, mechanical processing, assembly, nanocrystalline processing. • Properties - Mechanical, magnetic, optical, electrical, ferroelectric, thermal, interfacial, transport, thermodynamic • Synthesis - Quenching, solid state, solidification, solution synthesis, vapor deposition, high pressure, explosive
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信