{"title":"考虑变形因素的新型水滴动力学和蒸发模型","authors":"Xiaowang Zhao , Yulong Li , Han Zhang","doi":"10.1016/j.ijthermalsci.2024.109555","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate calculation of water droplet dynamics and evaporation are essential for effective forest firefighting. This study proposes a novel model for the dynamics and evaporation of water droplets by integrating a new Deformation Correction (DC) drag model with the optimal infinite thermal conductivity (ITC) liquid and the Ranz and Marshall (RM) gas phase model. The new DC drag model innovatively combines a semi-theoretical deformation correlation with a drag correction correlation. The terminal velocity predicted by the DC model closely aligns with the experimental data for falling water droplets, whereas other traditional models show significant deviations for large-diameter (>2 mm) droplets. Additionally, a critical deformation Weber number, <em>We</em><sub>d,crit</sub> = 2.5, is defined to determine whether droplet deformation should be considered. Three common liquid and gas phase models are evaluated based on empirical studies conducted in high-temperature airflow conditions (300–500 °C). The results indicate that the ITC model and RM model perform best in predicting water droplet evaporation rates, and the mechanism by which these models influence evaporation through the regulation of <em>B</em><sub>M</sub> and <span><math><mrow><mfrac><mrow><mi>S</mi><mi>h</mi></mrow><msub><mi>r</mi><mi>s</mi></msub></mfrac></mrow></math></span> numbers is also elucidated. Consequently, the model incorporating the new DC drag model, ITC liquid phase model, and RM gas phase model is identified to be the optimal model for predicting droplet dynamics and evaporation. For the simulation case of a water droplet drifting in hot updraft, the maximum prediction deviations of other models with different combinations relative to the optimal model are 15.3 % for drift distance and 40.1 % for evaporation ratio.</div></div>","PeriodicalId":341,"journal":{"name":"International Journal of Thermal Sciences","volume":"210 ","pages":"Article 109555"},"PeriodicalIF":4.9000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel model for the dynamics and evaporation of water droplets with deformation considerations\",\"authors\":\"Xiaowang Zhao , Yulong Li , Han Zhang\",\"doi\":\"10.1016/j.ijthermalsci.2024.109555\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Accurate calculation of water droplet dynamics and evaporation are essential for effective forest firefighting. This study proposes a novel model for the dynamics and evaporation of water droplets by integrating a new Deformation Correction (DC) drag model with the optimal infinite thermal conductivity (ITC) liquid and the Ranz and Marshall (RM) gas phase model. The new DC drag model innovatively combines a semi-theoretical deformation correlation with a drag correction correlation. The terminal velocity predicted by the DC model closely aligns with the experimental data for falling water droplets, whereas other traditional models show significant deviations for large-diameter (>2 mm) droplets. Additionally, a critical deformation Weber number, <em>We</em><sub>d,crit</sub> = 2.5, is defined to determine whether droplet deformation should be considered. Three common liquid and gas phase models are evaluated based on empirical studies conducted in high-temperature airflow conditions (300–500 °C). The results indicate that the ITC model and RM model perform best in predicting water droplet evaporation rates, and the mechanism by which these models influence evaporation through the regulation of <em>B</em><sub>M</sub> and <span><math><mrow><mfrac><mrow><mi>S</mi><mi>h</mi></mrow><msub><mi>r</mi><mi>s</mi></msub></mfrac></mrow></math></span> numbers is also elucidated. Consequently, the model incorporating the new DC drag model, ITC liquid phase model, and RM gas phase model is identified to be the optimal model for predicting droplet dynamics and evaporation. For the simulation case of a water droplet drifting in hot updraft, the maximum prediction deviations of other models with different combinations relative to the optimal model are 15.3 % for drift distance and 40.1 % for evaporation ratio.</div></div>\",\"PeriodicalId\":341,\"journal\":{\"name\":\"International Journal of Thermal Sciences\",\"volume\":\"210 \",\"pages\":\"Article 109555\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Thermal Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S129007292400677X\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermal Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S129007292400677X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
A novel model for the dynamics and evaporation of water droplets with deformation considerations
Accurate calculation of water droplet dynamics and evaporation are essential for effective forest firefighting. This study proposes a novel model for the dynamics and evaporation of water droplets by integrating a new Deformation Correction (DC) drag model with the optimal infinite thermal conductivity (ITC) liquid and the Ranz and Marshall (RM) gas phase model. The new DC drag model innovatively combines a semi-theoretical deformation correlation with a drag correction correlation. The terminal velocity predicted by the DC model closely aligns with the experimental data for falling water droplets, whereas other traditional models show significant deviations for large-diameter (>2 mm) droplets. Additionally, a critical deformation Weber number, Wed,crit = 2.5, is defined to determine whether droplet deformation should be considered. Three common liquid and gas phase models are evaluated based on empirical studies conducted in high-temperature airflow conditions (300–500 °C). The results indicate that the ITC model and RM model perform best in predicting water droplet evaporation rates, and the mechanism by which these models influence evaporation through the regulation of BM and numbers is also elucidated. Consequently, the model incorporating the new DC drag model, ITC liquid phase model, and RM gas phase model is identified to be the optimal model for predicting droplet dynamics and evaporation. For the simulation case of a water droplet drifting in hot updraft, the maximum prediction deviations of other models with different combinations relative to the optimal model are 15.3 % for drift distance and 40.1 % for evaporation ratio.
期刊介绍:
The International Journal of Thermal Sciences is a journal devoted to the publication of fundamental studies on the physics of transfer processes in general, with an emphasis on thermal aspects and also applied research on various processes, energy systems and the environment. Articles are published in English and French, and are subject to peer review.
The fundamental subjects considered within the scope of the journal are:
* Heat and relevant mass transfer at all scales (nano, micro and macro) and in all types of material (heterogeneous, composites, biological,...) and fluid flow
* Forced, natural or mixed convection in reactive or non-reactive media
* Single or multi–phase fluid flow with or without phase change
* Near–and far–field radiative heat transfer
* Combined modes of heat transfer in complex systems (for example, plasmas, biological, geological,...)
* Multiscale modelling
The applied research topics include:
* Heat exchangers, heat pipes, cooling processes
* Transport phenomena taking place in industrial processes (chemical, food and agricultural, metallurgical, space and aeronautical, automobile industries)
* Nano–and micro–technology for energy, space, biosystems and devices
* Heat transport analysis in advanced systems
* Impact of energy–related processes on environment, and emerging energy systems
The study of thermophysical properties of materials and fluids, thermal measurement techniques, inverse methods, and the developments of experimental methods are within the scope of the International Journal of Thermal Sciences which also covers the modelling, and numerical methods applied to thermal transfer.