玻璃钢化冷却格栅强制对流传热设计的优化和数值研究

IF 4.9 2区 工程技术 Q1 ENGINEERING, MECHANICAL
Ruolin Gao , Gaowei Yue , Zihao Li , Yanwen Zhang
{"title":"玻璃钢化冷却格栅强制对流传热设计的优化和数值研究","authors":"Ruolin Gao ,&nbsp;Gaowei Yue ,&nbsp;Zihao Li ,&nbsp;Yanwen Zhang","doi":"10.1016/j.ijthermalsci.2024.109569","DOIUrl":null,"url":null,"abstract":"<div><div>Conventional glass tempering equipment suffers from uneven cooling and low energy efficiency in its design and operation, which highlights the limitations of existing production technologies. There is relatively little previous work describing the heat transfer properties of tempered glass in actual production. In this study, a combination of numerical simulation and experimental testing is used to optimise the design of cooling air grille in glass tempering equipment. Firstly, the variation characteristics of glass surface temperature with cooling time in the physical tempering process were experimentally investigated. Subsequently, the structural design and optimisation of the air deflector plate in the cooling air grille are carried out. Finally, a coupled flow-thermal-solid numerical model of the cooling air grille is constructed based on the experimental conditions, and the effects of the four air pressure plate structures on the heat transfer efficiency and temperature uniformity in the quenching process are explored. The results demonstrated that the designed rectangular plate performs better than the conventional plate. Compared with the traditional plate, the designed rectangular plate can reduce the base temperature of the glass by 4.21 K, increase the heat transfer coefficient by 5.03 %, and increase the heat transfer rate by 2.13 %. In addition, the glass surface temperature inhomogeneity is reduced by 7.32 % by the rectangular plate. The proposed design offers an appropriate resolution for industrial applications. It also provides a solid foundation for advancements in tempered glass quality.</div></div>","PeriodicalId":341,"journal":{"name":"International Journal of Thermal Sciences","volume":"210 ","pages":"Article 109569"},"PeriodicalIF":4.9000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimisation and numerical study of forced convection heat transfer design for glass tempered cooling grille\",\"authors\":\"Ruolin Gao ,&nbsp;Gaowei Yue ,&nbsp;Zihao Li ,&nbsp;Yanwen Zhang\",\"doi\":\"10.1016/j.ijthermalsci.2024.109569\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Conventional glass tempering equipment suffers from uneven cooling and low energy efficiency in its design and operation, which highlights the limitations of existing production technologies. There is relatively little previous work describing the heat transfer properties of tempered glass in actual production. In this study, a combination of numerical simulation and experimental testing is used to optimise the design of cooling air grille in glass tempering equipment. Firstly, the variation characteristics of glass surface temperature with cooling time in the physical tempering process were experimentally investigated. Subsequently, the structural design and optimisation of the air deflector plate in the cooling air grille are carried out. Finally, a coupled flow-thermal-solid numerical model of the cooling air grille is constructed based on the experimental conditions, and the effects of the four air pressure plate structures on the heat transfer efficiency and temperature uniformity in the quenching process are explored. The results demonstrated that the designed rectangular plate performs better than the conventional plate. Compared with the traditional plate, the designed rectangular plate can reduce the base temperature of the glass by 4.21 K, increase the heat transfer coefficient by 5.03 %, and increase the heat transfer rate by 2.13 %. In addition, the glass surface temperature inhomogeneity is reduced by 7.32 % by the rectangular plate. The proposed design offers an appropriate resolution for industrial applications. It also provides a solid foundation for advancements in tempered glass quality.</div></div>\",\"PeriodicalId\":341,\"journal\":{\"name\":\"International Journal of Thermal Sciences\",\"volume\":\"210 \",\"pages\":\"Article 109569\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Thermal Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1290072924006914\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermal Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1290072924006914","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

传统的玻璃钢化设备在设计和运行中存在冷却不均匀和能效低的问题,这凸显了现有生产技术的局限性。以前描述实际生产中钢化玻璃传热性能的工作相对较少。本研究采用数值模拟和实验测试相结合的方法,对玻璃钢化设备中的冷却风栅进行优化设计。首先,实验研究了物理钢化过程中玻璃表面温度随冷却时间的变化特征。随后,对冷却空气格栅中的空气导流板进行了结构设计和优化。最后,根据实验条件构建了冷却风栅的流-热-固耦合数值模型,并探讨了四种风压板结构对淬火过程中传热效率和温度均匀性的影响。结果表明,设计的矩形板的性能优于传统板。与传统板相比,设计的矩形板可使玻璃基底温度降低 4.21 K,传热系数提高 5.03 %,传热速率提高 2.13 %。此外,矩形板还能使玻璃表面温度不均匀度降低 7.32%。所提出的设计为工业应用提供了适当的解决方案。它还为提高钢化玻璃质量奠定了坚实的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimisation and numerical study of forced convection heat transfer design for glass tempered cooling grille
Conventional glass tempering equipment suffers from uneven cooling and low energy efficiency in its design and operation, which highlights the limitations of existing production technologies. There is relatively little previous work describing the heat transfer properties of tempered glass in actual production. In this study, a combination of numerical simulation and experimental testing is used to optimise the design of cooling air grille in glass tempering equipment. Firstly, the variation characteristics of glass surface temperature with cooling time in the physical tempering process were experimentally investigated. Subsequently, the structural design and optimisation of the air deflector plate in the cooling air grille are carried out. Finally, a coupled flow-thermal-solid numerical model of the cooling air grille is constructed based on the experimental conditions, and the effects of the four air pressure plate structures on the heat transfer efficiency and temperature uniformity in the quenching process are explored. The results demonstrated that the designed rectangular plate performs better than the conventional plate. Compared with the traditional plate, the designed rectangular plate can reduce the base temperature of the glass by 4.21 K, increase the heat transfer coefficient by 5.03 %, and increase the heat transfer rate by 2.13 %. In addition, the glass surface temperature inhomogeneity is reduced by 7.32 % by the rectangular plate. The proposed design offers an appropriate resolution for industrial applications. It also provides a solid foundation for advancements in tempered glass quality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Thermal Sciences
International Journal of Thermal Sciences 工程技术-工程:机械
CiteScore
8.10
自引率
11.10%
发文量
531
审稿时长
55 days
期刊介绍: The International Journal of Thermal Sciences is a journal devoted to the publication of fundamental studies on the physics of transfer processes in general, with an emphasis on thermal aspects and also applied research on various processes, energy systems and the environment. Articles are published in English and French, and are subject to peer review. The fundamental subjects considered within the scope of the journal are: * Heat and relevant mass transfer at all scales (nano, micro and macro) and in all types of material (heterogeneous, composites, biological,...) and fluid flow * Forced, natural or mixed convection in reactive or non-reactive media * Single or multi–phase fluid flow with or without phase change * Near–and far–field radiative heat transfer * Combined modes of heat transfer in complex systems (for example, plasmas, biological, geological,...) * Multiscale modelling The applied research topics include: * Heat exchangers, heat pipes, cooling processes * Transport phenomena taking place in industrial processes (chemical, food and agricultural, metallurgical, space and aeronautical, automobile industries) * Nano–and micro–technology for energy, space, biosystems and devices * Heat transport analysis in advanced systems * Impact of energy–related processes on environment, and emerging energy systems The study of thermophysical properties of materials and fluids, thermal measurement techniques, inverse methods, and the developments of experimental methods are within the scope of the International Journal of Thermal Sciences which also covers the modelling, and numerical methods applied to thermal transfer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信