通过变异贝叶斯推理建立异步多变量金融时间序列的修正 VAR-deGARCH 模型

IF 6.9 2区 经济学 Q1 ECONOMICS
Wei-Ting Lai , Ray-Bing Chen , Shih-Feng Huang
{"title":"通过变异贝叶斯推理建立异步多变量金融时间序列的修正 VAR-deGARCH 模型","authors":"Wei-Ting Lai ,&nbsp;Ray-Bing Chen ,&nbsp;Shih-Feng Huang","doi":"10.1016/j.ijforecast.2024.06.002","DOIUrl":null,"url":null,"abstract":"<div><div><span>This study proposes a modified VAR-deGARCH model, denoted by M-VAR-deGARCH, for modeling asynchronous multivariate financial time series<span><span> with GARCH effects and simultaneously accommodating the latest market information. A variational Bayesian (VB) procedure is developed for the M-VAR-deGARCH model to infer structure selection and parameter estimation. We conduct extensive simulations and empirical studies to evaluate the fitting and forecasting performance of the M-VAR-deGARCH model. The simulation results reveal that the proposed VB procedure produces satisfactory selection performance. In addition, our empirical studies find that the latest market information in </span>Asia can provide helpful information to predict market trends in Europe and </span></span>South Africa, especially when momentous events occur.</div></div>","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":"41 1","pages":"Pages 345-360"},"PeriodicalIF":6.9000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A modified VAR-deGARCH model for asynchronous multivariate financial time series via variational Bayesian inference\",\"authors\":\"Wei-Ting Lai ,&nbsp;Ray-Bing Chen ,&nbsp;Shih-Feng Huang\",\"doi\":\"10.1016/j.ijforecast.2024.06.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div><span>This study proposes a modified VAR-deGARCH model, denoted by M-VAR-deGARCH, for modeling asynchronous multivariate financial time series<span><span> with GARCH effects and simultaneously accommodating the latest market information. A variational Bayesian (VB) procedure is developed for the M-VAR-deGARCH model to infer structure selection and parameter estimation. We conduct extensive simulations and empirical studies to evaluate the fitting and forecasting performance of the M-VAR-deGARCH model. The simulation results reveal that the proposed VB procedure produces satisfactory selection performance. In addition, our empirical studies find that the latest market information in </span>Asia can provide helpful information to predict market trends in Europe and </span></span>South Africa, especially when momentous events occur.</div></div>\",\"PeriodicalId\":14061,\"journal\":{\"name\":\"International Journal of Forecasting\",\"volume\":\"41 1\",\"pages\":\"Pages 345-360\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Forecasting\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169207024000566\",\"RegionNum\":2,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Forecasting","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169207024000566","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种改进的 VAR-deGARCH 模型,称为 M-VAR-deGARCH,用于对具有 GARCH 效应的异步多变量金融时间序列建模,并同时考虑最新的市场信息。我们为 M-VAR-deGARCH 模型开发了一种变异贝叶斯(VB)程序,用于推断结构选择和参数估计。我们进行了大量的模拟和实证研究,以评估 M-VAR-deGARCH 模型的拟合和预测性能。模拟结果表明,建议的 VB 程序具有令人满意的选择性能。此外,我们的实证研究发现,亚洲的最新市场信息可以为预测欧洲和南非的市场趋势提供有用信息,尤其是在重大事件发生时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A modified VAR-deGARCH model for asynchronous multivariate financial time series via variational Bayesian inference
This study proposes a modified VAR-deGARCH model, denoted by M-VAR-deGARCH, for modeling asynchronous multivariate financial time series with GARCH effects and simultaneously accommodating the latest market information. A variational Bayesian (VB) procedure is developed for the M-VAR-deGARCH model to infer structure selection and parameter estimation. We conduct extensive simulations and empirical studies to evaluate the fitting and forecasting performance of the M-VAR-deGARCH model. The simulation results reveal that the proposed VB procedure produces satisfactory selection performance. In addition, our empirical studies find that the latest market information in Asia can provide helpful information to predict market trends in Europe and South Africa, especially when momentous events occur.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
17.10
自引率
11.40%
发文量
189
审稿时长
77 days
期刊介绍: The International Journal of Forecasting is a leading journal in its field that publishes high quality refereed papers. It aims to bridge the gap between theory and practice, making forecasting useful and relevant for decision and policy makers. The journal places strong emphasis on empirical studies, evaluation activities, implementation research, and improving the practice of forecasting. It welcomes various points of view and encourages debate to find solutions to field-related problems. The journal is the official publication of the International Institute of Forecasters (IIF) and is indexed in Sociological Abstracts, Journal of Economic Literature, Statistical Theory and Method Abstracts, INSPEC, Current Contents, UMI Data Courier, RePEc, Academic Journal Guide, CIS, IAOR, and Social Sciences Citation Index.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信