深层超大群体挖掘的数值分析:案例研究

IF 8.2 1区 工程技术 Q1 ENGINEERING, CIVIL
Mingguang Li , Haobiao Chen , Zhongjie Zhang , Jinjian Chen , Qirun Yang
{"title":"深层超大群体挖掘的数值分析:案例研究","authors":"Mingguang Li ,&nbsp;Haobiao Chen ,&nbsp;Zhongjie Zhang ,&nbsp;Jinjian Chen ,&nbsp;Qirun Yang","doi":"10.1016/j.undsp.2024.08.001","DOIUrl":null,"url":null,"abstract":"<div><div>Group excavations are composed of several individual excavations adjacent to each other with simultaneous or successive construction sequences (CS), which are distinctive from individual excavation in terms of the performance of excavation. In this study, a hyper-scale 3D finite element model was established to investigate the deformation behavior of a diaphragm wall system retaining a deep and oversized group excavation (DOGE) in Shanghai soft clay deposits. The numerical model simulated the practical construction stages and sequences, and it was verified by a series of comparisons with field measurements. Based on the numerical model, the spatial effect of the performance of DOGE in the process of excavation stages was investigated in this study, which cannot be addressed by limited field measurements. Furthermore, the effects of partition walls and CS on the deformation control were discussed to provide practical suggestions for oversized and deep excavations. The results indicate that the employment of bi-partition walls to divide the oversized excavation into several small pits and mono-partition walls and cross walls to further divide the pits near the metro lines into smaller ones, was proved to have significant effectiveness in controlling the wall deflection and protecting the adjacent metro line. For the partition wall, the magnitude and direction of the wall deflection primarily depended on the initial excavation, while the influence of subsequent excavation activities proved insignificant. Thus, it should be noted that the effect of the initial excavation should be especially concentrated. The findings can help optimize similar DOGE engineering.</div></div>","PeriodicalId":48505,"journal":{"name":"Underground Space","volume":"21 ","pages":"Pages 178-197"},"PeriodicalIF":8.2000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical analysis of a deep and oversized group excavation: A case study\",\"authors\":\"Mingguang Li ,&nbsp;Haobiao Chen ,&nbsp;Zhongjie Zhang ,&nbsp;Jinjian Chen ,&nbsp;Qirun Yang\",\"doi\":\"10.1016/j.undsp.2024.08.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Group excavations are composed of several individual excavations adjacent to each other with simultaneous or successive construction sequences (CS), which are distinctive from individual excavation in terms of the performance of excavation. In this study, a hyper-scale 3D finite element model was established to investigate the deformation behavior of a diaphragm wall system retaining a deep and oversized group excavation (DOGE) in Shanghai soft clay deposits. The numerical model simulated the practical construction stages and sequences, and it was verified by a series of comparisons with field measurements. Based on the numerical model, the spatial effect of the performance of DOGE in the process of excavation stages was investigated in this study, which cannot be addressed by limited field measurements. Furthermore, the effects of partition walls and CS on the deformation control were discussed to provide practical suggestions for oversized and deep excavations. The results indicate that the employment of bi-partition walls to divide the oversized excavation into several small pits and mono-partition walls and cross walls to further divide the pits near the metro lines into smaller ones, was proved to have significant effectiveness in controlling the wall deflection and protecting the adjacent metro line. For the partition wall, the magnitude and direction of the wall deflection primarily depended on the initial excavation, while the influence of subsequent excavation activities proved insignificant. Thus, it should be noted that the effect of the initial excavation should be especially concentrated. The findings can help optimize similar DOGE engineering.</div></div>\",\"PeriodicalId\":48505,\"journal\":{\"name\":\"Underground Space\",\"volume\":\"21 \",\"pages\":\"Pages 178-197\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Underground Space\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2467967424001077\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Underground Space","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2467967424001077","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

群挖是由多个相邻的单个开挖点同时或连续施工(CS)组成,在开挖性能上与单个开挖有明显区别。本研究建立了超大规模三维有限元模型,以研究上海软粘土地层中超大深基坑群开挖(DOGE)连续墙系统的变形行为。数值模型模拟了实际施工阶段和顺序,并通过一系列与现场测量的对比进行了验证。在数值模型的基础上,本研究研究了开挖阶段过程中 DOGE 性能的空间效应,而有限的实地测量无法解决这一问题。此外,还讨论了隔墙和 CS 对变形控制的影响,为超大和超深开挖提供了实用建议。研究结果表明,采用双隔墙将超大开挖分成多个小坑,采用单隔墙和十字墙将地铁线附近的坑进一步分成更小的坑,对控制墙体变形和保护邻近地铁线具有显著效果。就隔墙而言,墙体挠度的大小和方向主要取决于最初的挖掘活动,而后续挖掘活动的影响则微乎其微。因此,应特别注意初始开挖的影响。这些发现有助于优化类似的 DOGE 工程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical analysis of a deep and oversized group excavation: A case study
Group excavations are composed of several individual excavations adjacent to each other with simultaneous or successive construction sequences (CS), which are distinctive from individual excavation in terms of the performance of excavation. In this study, a hyper-scale 3D finite element model was established to investigate the deformation behavior of a diaphragm wall system retaining a deep and oversized group excavation (DOGE) in Shanghai soft clay deposits. The numerical model simulated the practical construction stages and sequences, and it was verified by a series of comparisons with field measurements. Based on the numerical model, the spatial effect of the performance of DOGE in the process of excavation stages was investigated in this study, which cannot be addressed by limited field measurements. Furthermore, the effects of partition walls and CS on the deformation control were discussed to provide practical suggestions for oversized and deep excavations. The results indicate that the employment of bi-partition walls to divide the oversized excavation into several small pits and mono-partition walls and cross walls to further divide the pits near the metro lines into smaller ones, was proved to have significant effectiveness in controlling the wall deflection and protecting the adjacent metro line. For the partition wall, the magnitude and direction of the wall deflection primarily depended on the initial excavation, while the influence of subsequent excavation activities proved insignificant. Thus, it should be noted that the effect of the initial excavation should be especially concentrated. The findings can help optimize similar DOGE engineering.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Underground Space
Underground Space ENGINEERING, CIVIL-
CiteScore
10.20
自引率
14.10%
发文量
71
审稿时长
63 days
期刊介绍: Underground Space is an open access international journal without article processing charges (APC) committed to serving as a scientific forum for researchers and practitioners in the field of underground engineering. The journal welcomes manuscripts that deal with original theories, methods, technologies, and important applications throughout the life-cycle of underground projects, including planning, design, operation and maintenance, disaster prevention, and demolition. The journal is particularly interested in manuscripts related to the latest development of smart underground engineering from the perspectives of resilience, resources saving, environmental friendliness, humanity, and artificial intelligence. The manuscripts are expected to have significant innovation and potential impact in the field of underground engineering, and should have clear association with or application in underground projects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信