{"title":"通过对现有模型的比较分析,开发和评估马拉维特定地点的蒸散模型","authors":"Grivin Chipula , Vitumbiko Moyo , Thomas Nyanda Reuben , Lameck Fiwa , Mwabuke Nkhata , Horace Phiri , Isaac Fandika","doi":"10.1016/j.pce.2024.103814","DOIUrl":null,"url":null,"abstract":"<div><div>Locally based information on reference evapotranspiration pertinent to efficient irrigation water management is scarce in developing countries. This compromises the accuracy in determining irrigation crop water requirements since most existing reference evapotranspiration models are empirically based and less accurate unless calibrated to local conditions. The FAO Penman-Monteith equation has been proven to estimate reference evapotranspiration for different environments worldwide. However, its intensive data input requirements impede utilization of the model in developing countries due to inadequate climate data collection and management capacities. Therefore, a need existed to develop site-specific models that are less data intensive. A study was conducted aimed at developing site-specific evapotranspiration models using comparative analysis of the Kharrufa, Linacre, Hargreaves Original and Hargreaves Modified empirical models during the wet and dry season. Performance of each model was compared with the FAO Penman-Monteith model, regarded as the standard model. The models whose Root Mean Square Error (RMSE), Mean Bias Error (MBE) and coefficient of determination (R<sup>2</sup>) were satisfactory were selected. The selected models were developed statistically through regression analysis. Performance of the Kharrufa model was satisfactory comparatively as observed from its RMSEs of 1.02 mm/day and MBE -0.34 to 0.8 for the dry season. However, the model less accurately estimated reference evapotranspiration during the wet season (RMSE 2.18 mm/day and MBE 1.03 to 2.13). The study recommends the use of the Kharrufa model in the study locations in dry seasons while utilization in wet season may require further studies to ascertain the model's useability and reliability.</div></div>","PeriodicalId":54616,"journal":{"name":"Physics and Chemistry of the Earth","volume":"137 ","pages":"Article 103814"},"PeriodicalIF":3.0000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development and evaluation of site-specific evapotranspiration models in Malawi through a comparative analysis of existing models\",\"authors\":\"Grivin Chipula , Vitumbiko Moyo , Thomas Nyanda Reuben , Lameck Fiwa , Mwabuke Nkhata , Horace Phiri , Isaac Fandika\",\"doi\":\"10.1016/j.pce.2024.103814\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Locally based information on reference evapotranspiration pertinent to efficient irrigation water management is scarce in developing countries. This compromises the accuracy in determining irrigation crop water requirements since most existing reference evapotranspiration models are empirically based and less accurate unless calibrated to local conditions. The FAO Penman-Monteith equation has been proven to estimate reference evapotranspiration for different environments worldwide. However, its intensive data input requirements impede utilization of the model in developing countries due to inadequate climate data collection and management capacities. Therefore, a need existed to develop site-specific models that are less data intensive. A study was conducted aimed at developing site-specific evapotranspiration models using comparative analysis of the Kharrufa, Linacre, Hargreaves Original and Hargreaves Modified empirical models during the wet and dry season. Performance of each model was compared with the FAO Penman-Monteith model, regarded as the standard model. The models whose Root Mean Square Error (RMSE), Mean Bias Error (MBE) and coefficient of determination (R<sup>2</sup>) were satisfactory were selected. The selected models were developed statistically through regression analysis. Performance of the Kharrufa model was satisfactory comparatively as observed from its RMSEs of 1.02 mm/day and MBE -0.34 to 0.8 for the dry season. However, the model less accurately estimated reference evapotranspiration during the wet season (RMSE 2.18 mm/day and MBE 1.03 to 2.13). The study recommends the use of the Kharrufa model in the study locations in dry seasons while utilization in wet season may require further studies to ascertain the model's useability and reliability.</div></div>\",\"PeriodicalId\":54616,\"journal\":{\"name\":\"Physics and Chemistry of the Earth\",\"volume\":\"137 \",\"pages\":\"Article 103814\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics and Chemistry of the Earth\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1474706524002729\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Chemistry of the Earth","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1474706524002729","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Development and evaluation of site-specific evapotranspiration models in Malawi through a comparative analysis of existing models
Locally based information on reference evapotranspiration pertinent to efficient irrigation water management is scarce in developing countries. This compromises the accuracy in determining irrigation crop water requirements since most existing reference evapotranspiration models are empirically based and less accurate unless calibrated to local conditions. The FAO Penman-Monteith equation has been proven to estimate reference evapotranspiration for different environments worldwide. However, its intensive data input requirements impede utilization of the model in developing countries due to inadequate climate data collection and management capacities. Therefore, a need existed to develop site-specific models that are less data intensive. A study was conducted aimed at developing site-specific evapotranspiration models using comparative analysis of the Kharrufa, Linacre, Hargreaves Original and Hargreaves Modified empirical models during the wet and dry season. Performance of each model was compared with the FAO Penman-Monteith model, regarded as the standard model. The models whose Root Mean Square Error (RMSE), Mean Bias Error (MBE) and coefficient of determination (R2) were satisfactory were selected. The selected models were developed statistically through regression analysis. Performance of the Kharrufa model was satisfactory comparatively as observed from its RMSEs of 1.02 mm/day and MBE -0.34 to 0.8 for the dry season. However, the model less accurately estimated reference evapotranspiration during the wet season (RMSE 2.18 mm/day and MBE 1.03 to 2.13). The study recommends the use of the Kharrufa model in the study locations in dry seasons while utilization in wet season may require further studies to ascertain the model's useability and reliability.
期刊介绍:
Physics and Chemistry of the Earth is an international interdisciplinary journal for the rapid publication of collections of refereed communications in separate thematic issues, either stemming from scientific meetings, or, especially compiled for the occasion. There is no restriction on the length of articles published in the journal. Physics and Chemistry of the Earth incorporates the separate Parts A, B and C which existed until the end of 2001.
Please note: the Editors are unable to consider submissions that are not invited or linked to a thematic issue. Please do not submit unsolicited papers.
The journal covers the following subject areas:
-Solid Earth and Geodesy:
(geology, geochemistry, tectonophysics, seismology, volcanology, palaeomagnetism and rock magnetism, electromagnetism and potential fields, marine and environmental geosciences as well as geodesy).
-Hydrology, Oceans and Atmosphere:
(hydrology and water resources research, engineering and management, oceanography and oceanic chemistry, shelf, sea, lake and river sciences, meteorology and atmospheric sciences incl. chemistry as well as climatology and glaciology).
-Solar-Terrestrial and Planetary Science:
(solar, heliospheric and solar-planetary sciences, geology, geophysics and atmospheric sciences of planets, satellites and small bodies as well as cosmochemistry and exobiology).