Yolanda Gomez , Jesus Rios , David Rios Insua , Jose Vila
{"title":"利用判断分解-重组预测对抗行动","authors":"Yolanda Gomez , Jesus Rios , David Rios Insua , Jose Vila","doi":"10.1016/j.ijforecast.2024.03.004","DOIUrl":null,"url":null,"abstract":"<div><div><span>In domains such as homeland security, cybersecurity, and competitive marketing, it is frequently the case that analysts need to forecast actions by other intelligent agents that impact the problem of interest. Standard structured expert judgment elicitation techniques may fall short in this type of problem as they do not explicitly take into account intentionality. We present a decomposition technique based on adversarial </span>risk analysis<span> followed by a behavioural recomposition using discrete choice models that facilitate such elicitation process and illustrate its reasonable performance through behavioural experiments.</span></div></div>","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":"41 1","pages":"Pages 76-91"},"PeriodicalIF":6.9000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Forecasting adversarial actions using judgment decomposition-recomposition\",\"authors\":\"Yolanda Gomez , Jesus Rios , David Rios Insua , Jose Vila\",\"doi\":\"10.1016/j.ijforecast.2024.03.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div><span>In domains such as homeland security, cybersecurity, and competitive marketing, it is frequently the case that analysts need to forecast actions by other intelligent agents that impact the problem of interest. Standard structured expert judgment elicitation techniques may fall short in this type of problem as they do not explicitly take into account intentionality. We present a decomposition technique based on adversarial </span>risk analysis<span> followed by a behavioural recomposition using discrete choice models that facilitate such elicitation process and illustrate its reasonable performance through behavioural experiments.</span></div></div>\",\"PeriodicalId\":14061,\"journal\":{\"name\":\"International Journal of Forecasting\",\"volume\":\"41 1\",\"pages\":\"Pages 76-91\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Forecasting\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169207024000293\",\"RegionNum\":2,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Forecasting","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169207024000293","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
Forecasting adversarial actions using judgment decomposition-recomposition
In domains such as homeland security, cybersecurity, and competitive marketing, it is frequently the case that analysts need to forecast actions by other intelligent agents that impact the problem of interest. Standard structured expert judgment elicitation techniques may fall short in this type of problem as they do not explicitly take into account intentionality. We present a decomposition technique based on adversarial risk analysis followed by a behavioural recomposition using discrete choice models that facilitate such elicitation process and illustrate its reasonable performance through behavioural experiments.
期刊介绍:
The International Journal of Forecasting is a leading journal in its field that publishes high quality refereed papers. It aims to bridge the gap between theory and practice, making forecasting useful and relevant for decision and policy makers. The journal places strong emphasis on empirical studies, evaluation activities, implementation research, and improving the practice of forecasting. It welcomes various points of view and encourages debate to find solutions to field-related problems. The journal is the official publication of the International Institute of Forecasters (IIF) and is indexed in Sociological Abstracts, Journal of Economic Literature, Statistical Theory and Method Abstracts, INSPEC, Current Contents, UMI Data Courier, RePEc, Academic Journal Guide, CIS, IAOR, and Social Sciences Citation Index.