论四元数、二面括号和霍普夫-伽罗瓦结构

IF 0.8 2区 数学 Q2 MATHEMATICS
Nigel P. Byott , Fabio Ferri
{"title":"论四元数、二面括号和霍普夫-伽罗瓦结构","authors":"Nigel P. Byott ,&nbsp;Fabio Ferri","doi":"10.1016/j.jalgebra.2024.11.011","DOIUrl":null,"url":null,"abstract":"<div><div>We prove a conjecture of Guarnieri and Vendramin on the number of braces of a given order whose multiplicative group is a generalised quaternion group. At the same time, we give a similar result where the multiplicative group is dihedral. We also enumerate Hopf-Galois structures of abelian type on Galois extensions with generalised quaternion or dihedral Galois group.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"665 ","pages":"Pages 72-102"},"PeriodicalIF":0.8000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the number of quaternion and dihedral braces and Hopf–Galois structures\",\"authors\":\"Nigel P. Byott ,&nbsp;Fabio Ferri\",\"doi\":\"10.1016/j.jalgebra.2024.11.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We prove a conjecture of Guarnieri and Vendramin on the number of braces of a given order whose multiplicative group is a generalised quaternion group. At the same time, we give a similar result where the multiplicative group is dihedral. We also enumerate Hopf-Galois structures of abelian type on Galois extensions with generalised quaternion or dihedral Galois group.</div></div>\",\"PeriodicalId\":14888,\"journal\":{\"name\":\"Journal of Algebra\",\"volume\":\"665 \",\"pages\":\"Pages 72-102\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021869324006185\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869324006185","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了瓜尔尼里和文德拉明关于乘法群为广义四元数的给定阶的括号数的猜想。同时,我们还给出了乘法群为二面体群时的类似结果。我们还列举了具有广义四元组或二面体伽罗瓦群的伽罗瓦扩展上的无边型霍普夫-伽罗瓦结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the number of quaternion and dihedral braces and Hopf–Galois structures
We prove a conjecture of Guarnieri and Vendramin on the number of braces of a given order whose multiplicative group is a generalised quaternion group. At the same time, we give a similar result where the multiplicative group is dihedral. We also enumerate Hopf-Galois structures of abelian type on Galois extensions with generalised quaternion or dihedral Galois group.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Algebra
Journal of Algebra 数学-数学
CiteScore
1.50
自引率
22.20%
发文量
414
审稿时长
2-4 weeks
期刊介绍: The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信