代数曲线自积的对角集

IF 0.8 2区 数学 Q2 MATHEMATICS
Masayoshi Miyanishi
{"title":"代数曲线自积的对角集","authors":"Masayoshi Miyanishi","doi":"10.1016/j.jalgebra.2024.10.050","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>C</em> be a smooth projective curve of genus <em>g</em> defined over an algebraically closed field of characteristic <span><math><mi>p</mi><mo>≠</mo><mn>2</mn></math></span> and let Δ be the diagonal of <span><math><mi>C</mi><mo>×</mo><mi>C</mi></math></span>. We observe the complement <span><math><mi>X</mi><mo>:</mo><mo>=</mo><mo>(</mo><mi>C</mi><mo>×</mo><mi>C</mi><mo>)</mo><mo>∖</mo><mi>Δ</mi></math></span>. If <span><math><mi>g</mi><mo>=</mo><mn>0</mn></math></span>, <em>X</em> is an affine hypersurface <span><math><mi>x</mi><mi>y</mi><mo>=</mo><msup><mrow><mi>z</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mn>1</mn></math></span> in <span><math><msup><mrow><mi>A</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> which is the simplest example of Danielewski surfaces. If <span><math><mi>g</mi><mo>=</mo><mn>1</mn></math></span> then Δ is a fiber of an elliptic fibration over <em>C</em> so that <span><math><mo>(</mo><msup><mrow><mi>Δ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo><mo>=</mo><mn>0</mn></math></span> and <span><math><mover><mrow><mi>κ</mi></mrow><mo>‾</mo></mover><mo>(</mo><mi>X</mi><mo>)</mo><mo>=</mo><mn>1</mn></math></span>, and if <span><math><mi>g</mi><mo>&gt;</mo><mn>1</mn></math></span>, <span><math><mo>(</mo><msup><mrow><mi>Δ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo><mo>=</mo><mn>2</mn><mo>−</mo><mn>2</mn><mi>g</mi></math></span> and Δ is contractible. In the case <em>C</em> has genus <span><math><mi>g</mi><mo>&gt;</mo><mn>1</mn></math></span>, <em>X</em> is embedded bijectively into the Jacobian variety if <em>C</em> is non-hyperelliptic, though <em>X</em> is generically a double covering of a surface in the Jacobian variety if <em>C</em> is hyperelliptic. Some observations will be made in the case <em>k</em> has characteristic 2.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"665 ","pages":"Pages 39-47"},"PeriodicalIF":0.8000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The diagonal set of the self-product of an algebraic curve\",\"authors\":\"Masayoshi Miyanishi\",\"doi\":\"10.1016/j.jalgebra.2024.10.050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <em>C</em> be a smooth projective curve of genus <em>g</em> defined over an algebraically closed field of characteristic <span><math><mi>p</mi><mo>≠</mo><mn>2</mn></math></span> and let Δ be the diagonal of <span><math><mi>C</mi><mo>×</mo><mi>C</mi></math></span>. We observe the complement <span><math><mi>X</mi><mo>:</mo><mo>=</mo><mo>(</mo><mi>C</mi><mo>×</mo><mi>C</mi><mo>)</mo><mo>∖</mo><mi>Δ</mi></math></span>. If <span><math><mi>g</mi><mo>=</mo><mn>0</mn></math></span>, <em>X</em> is an affine hypersurface <span><math><mi>x</mi><mi>y</mi><mo>=</mo><msup><mrow><mi>z</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mn>1</mn></math></span> in <span><math><msup><mrow><mi>A</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> which is the simplest example of Danielewski surfaces. If <span><math><mi>g</mi><mo>=</mo><mn>1</mn></math></span> then Δ is a fiber of an elliptic fibration over <em>C</em> so that <span><math><mo>(</mo><msup><mrow><mi>Δ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo><mo>=</mo><mn>0</mn></math></span> and <span><math><mover><mrow><mi>κ</mi></mrow><mo>‾</mo></mover><mo>(</mo><mi>X</mi><mo>)</mo><mo>=</mo><mn>1</mn></math></span>, and if <span><math><mi>g</mi><mo>&gt;</mo><mn>1</mn></math></span>, <span><math><mo>(</mo><msup><mrow><mi>Δ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo><mo>=</mo><mn>2</mn><mo>−</mo><mn>2</mn><mi>g</mi></math></span> and Δ is contractible. In the case <em>C</em> has genus <span><math><mi>g</mi><mo>&gt;</mo><mn>1</mn></math></span>, <em>X</em> is embedded bijectively into the Jacobian variety if <em>C</em> is non-hyperelliptic, though <em>X</em> is generically a double covering of a surface in the Jacobian variety if <em>C</em> is hyperelliptic. Some observations will be made in the case <em>k</em> has characteristic 2.</div></div>\",\"PeriodicalId\":14888,\"journal\":{\"name\":\"Journal of Algebra\",\"volume\":\"665 \",\"pages\":\"Pages 39-47\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021869324006112\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869324006112","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设 C 是定义在特征 p≠2 的代数闭域上的属 g 的光滑投影曲线,设 Δ 是 C×C 的对角线。我们观察补集 X:=(C×C)∖Δ。如果 g=0,X 是 A3 中的仿射超曲面 xy=z2-1,这是达尼埃夫斯基曲面最简单的例子。如果 g=1,那么 Δ 是 C 上椭圆纤维的纤维,因此 (Δ2)=0 和 κ‾(X)=1 ;如果 g>1,(Δ2)=2-2g 和 Δ 是可收缩的。在 C 具有 g>1 属性的情况下,如果 C 是非超椭圆形,X 将被双射嵌入雅各布综中,但如果 C 是超椭圆形,X 通常是雅各布综中曲面的双覆盖。在 k 的特征为 2 的情况下,我们将提出一些看法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The diagonal set of the self-product of an algebraic curve
Let C be a smooth projective curve of genus g defined over an algebraically closed field of characteristic p2 and let Δ be the diagonal of C×C. We observe the complement X:=(C×C)Δ. If g=0, X is an affine hypersurface xy=z21 in A3 which is the simplest example of Danielewski surfaces. If g=1 then Δ is a fiber of an elliptic fibration over C so that (Δ2)=0 and κ(X)=1, and if g>1, (Δ2)=22g and Δ is contractible. In the case C has genus g>1, X is embedded bijectively into the Jacobian variety if C is non-hyperelliptic, though X is generically a double covering of a surface in the Jacobian variety if C is hyperelliptic. Some observations will be made in the case k has characteristic 2.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Algebra
Journal of Algebra 数学-数学
CiteScore
1.50
自引率
22.20%
发文量
414
审稿时长
2-4 weeks
期刊介绍: The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信