特级加权超曲面的合理性

IF 0.8 2区 数学 Q2 MATHEMATICS
Michael Chitayat
{"title":"特级加权超曲面的合理性","authors":"Michael Chitayat","doi":"10.1016/j.jalgebra.2024.10.032","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>X</mi><mo>⊂</mo><mi>P</mi><mo>(</mo><msub><mrow><mi>w</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>w</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>w</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>w</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>)</mo></math></span> be a quasismooth well-formed weighted projective hypersurface and let <span><math><mi>L</mi><mo>=</mo><mi>lcm</mi><mo>(</mo><msub><mrow><mi>w</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>w</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>w</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>w</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>)</mo></math></span>. We characterize when <em>X</em> is rational under the assumption that <em>L</em> divides <span><math><mi>deg</mi><mo>⁡</mo><mo>(</mo><mi>X</mi><mo>)</mo></math></span>. Furthermore, we give a new family of normal rational weighted projective hypersurfaces with ample canonical divisor, valid in all dimensions, adding to the list of examples discovered by Kollár. Finally, we determine precisely which affine Pham-Brieskorn threefolds are rational, answering a question of Rajendra V. Gurjar.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"665 ","pages":"Pages 7-29"},"PeriodicalIF":0.8000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rationality of weighted hypersurfaces of special degree\",\"authors\":\"Michael Chitayat\",\"doi\":\"10.1016/j.jalgebra.2024.10.032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><mi>X</mi><mo>⊂</mo><mi>P</mi><mo>(</mo><msub><mrow><mi>w</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>w</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>w</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>w</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>)</mo></math></span> be a quasismooth well-formed weighted projective hypersurface and let <span><math><mi>L</mi><mo>=</mo><mi>lcm</mi><mo>(</mo><msub><mrow><mi>w</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>w</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>w</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>w</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>)</mo></math></span>. We characterize when <em>X</em> is rational under the assumption that <em>L</em> divides <span><math><mi>deg</mi><mo>⁡</mo><mo>(</mo><mi>X</mi><mo>)</mo></math></span>. Furthermore, we give a new family of normal rational weighted projective hypersurfaces with ample canonical divisor, valid in all dimensions, adding to the list of examples discovered by Kollár. Finally, we determine precisely which affine Pham-Brieskorn threefolds are rational, answering a question of Rajendra V. Gurjar.</div></div>\",\"PeriodicalId\":14888,\"journal\":{\"name\":\"Journal of Algebra\",\"volume\":\"665 \",\"pages\":\"Pages 7-29\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021869324005921\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869324005921","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设 X⊂P(w0,w1,w2,w3)是一个准光滑的完形加权投影超曲面,设 L=lcm(w0,w1,w2,w3).假设 L 平分 deg(X),我们将描述当 X 为有理时的特征。此外,我们还给出了在所有维度上都有效的、具有充裕典范除数的正常有理加权投影超曲面的一个新族,为 Kollár 发现的例子列表增添了新的内容。最后,我们精确地确定了哪些仿射 Pham-Brieskorn 三折是有理的,回答了 Rajendra V. Gurjar 的一个问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rationality of weighted hypersurfaces of special degree
Let XP(w0,w1,w2,w3) be a quasismooth well-formed weighted projective hypersurface and let L=lcm(w0,w1,w2,w3). We characterize when X is rational under the assumption that L divides deg(X). Furthermore, we give a new family of normal rational weighted projective hypersurfaces with ample canonical divisor, valid in all dimensions, adding to the list of examples discovered by Kollár. Finally, we determine precisely which affine Pham-Brieskorn threefolds are rational, answering a question of Rajendra V. Gurjar.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Algebra
Journal of Algebra 数学-数学
CiteScore
1.50
自引率
22.20%
发文量
414
审稿时长
2-4 weeks
期刊介绍: The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信