有/无逻辑源的二维觅食者-开发者模型解的全局存在性和有界性

IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED
Shengfeng Zhao, Li Xie
{"title":"有/无逻辑源的二维觅食者-开发者模型解的全局存在性和有界性","authors":"Shengfeng Zhao,&nbsp;Li Xie","doi":"10.1016/j.nonrwa.2024.104261","DOIUrl":null,"url":null,"abstract":"<div><div>This paper is focused on the zero-flux initial–boundary value problem for a forager-exploiter model of the form <span><span><span><math><mfenced><mrow><mtable><mtr><mtd></mtd><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>u</mi><mo>−</mo><mo>∇</mo><mi>⋅</mi><mrow><mo>(</mo><mi>u</mi><mo>∇</mo><mi>w</mi><mo>)</mo></mrow><mo>+</mo><msub><mrow><mi>μ</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>u</mi><mo>−</mo><msup><mrow><mi>u</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>)</mo></mrow><mo>,</mo></mtd><mtd></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mspace></mspace><mi>t</mi><mo>&gt;</mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd></mtd><mtd><msub><mrow><mi>v</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>v</mi><mo>−</mo><mo>∇</mo><mi>⋅</mi><mrow><mo>(</mo><mi>v</mi><mo>∇</mo><mi>u</mi><mo>)</mo></mrow><mo>+</mo><msub><mrow><mi>μ</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>v</mi><mo>−</mo><msup><mrow><mi>v</mi></mrow><mrow><mi>l</mi></mrow></msup><mo>)</mo></mrow><mo>,</mo></mtd><mtd></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mspace></mspace><mi>t</mi><mo>&gt;</mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd></mtd><mtd><msub><mrow><mi>w</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>w</mi><mo>−</mo><mi>f</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mi>w</mi><mo>−</mo><mi>g</mi><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow><mi>w</mi><mo>−</mo><mi>μ</mi><mi>w</mi><mo>+</mo><mi>r</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow><mo>,</mo></mtd><mtd></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mspace></mspace><mi>t</mi><mo>&gt;</mo><mn>0</mn><mo>,</mo></mtd></mtr></mtable></mrow></mfenced></math></span></span></span>in a smoothly bounded domain <span><math><mrow><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span>, where <span><math><mi>μ</mi></math></span>, <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>, <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, <span><math><mi>m</mi></math></span>, <span><math><mi>l</mi></math></span> are positive constants, <span><math><mrow><mi>r</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msup><mrow><mo>(</mo><mover><mrow><mi>Ω</mi></mrow><mo>¯</mo></mover><mo>×</mo><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>∩</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>×</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span> is a given nonnegative function, the functions <span><math><mrow><mi>f</mi><mo>,</mo><mspace></mspace><mi>g</mi><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msup><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mi>∞</mi><mo>]</mo></mrow></mrow></math></span> are assumed to behave essentially like <span><math><msup><mrow><mi>u</mi></mrow><mrow><mi>α</mi></mrow></msup></math></span>, <span><math><msup><mrow><mi>v</mi></mrow><mrow><mi>β</mi></mrow></msup></math></span> respectively, with some positive constants <span><math><mi>α</mi></math></span> and <span><math><mi>β</mi></math></span>. It is shown that the initial–boundary value problem possesses globally bounded classical solutions, provided that <span><math><mrow><mi>m</mi><mo>≥</mo><mn>1</mn></mrow></math></span> , <span><math><mrow><mi>l</mi><mo>≥</mo><mn>1</mn></mrow></math></span>, <span><math><mrow><mi>α</mi><mo>≤</mo><mfrac><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></math></span> and <span><math><mrow><mi>β</mi><mo>&lt;</mo><mfrac><mrow><mi>l</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></math></span>.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"83 ","pages":"Article 104261"},"PeriodicalIF":1.8000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global existence and boundedness of solutions to a two-dimensional forager-exploiter model with/without logistic source\",\"authors\":\"Shengfeng Zhao,&nbsp;Li Xie\",\"doi\":\"10.1016/j.nonrwa.2024.104261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper is focused on the zero-flux initial–boundary value problem for a forager-exploiter model of the form <span><span><span><math><mfenced><mrow><mtable><mtr><mtd></mtd><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>u</mi><mo>−</mo><mo>∇</mo><mi>⋅</mi><mrow><mo>(</mo><mi>u</mi><mo>∇</mo><mi>w</mi><mo>)</mo></mrow><mo>+</mo><msub><mrow><mi>μ</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>u</mi><mo>−</mo><msup><mrow><mi>u</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>)</mo></mrow><mo>,</mo></mtd><mtd></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mspace></mspace><mi>t</mi><mo>&gt;</mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd></mtd><mtd><msub><mrow><mi>v</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>v</mi><mo>−</mo><mo>∇</mo><mi>⋅</mi><mrow><mo>(</mo><mi>v</mi><mo>∇</mo><mi>u</mi><mo>)</mo></mrow><mo>+</mo><msub><mrow><mi>μ</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>v</mi><mo>−</mo><msup><mrow><mi>v</mi></mrow><mrow><mi>l</mi></mrow></msup><mo>)</mo></mrow><mo>,</mo></mtd><mtd></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mspace></mspace><mi>t</mi><mo>&gt;</mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd></mtd><mtd><msub><mrow><mi>w</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>w</mi><mo>−</mo><mi>f</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mi>w</mi><mo>−</mo><mi>g</mi><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow><mi>w</mi><mo>−</mo><mi>μ</mi><mi>w</mi><mo>+</mo><mi>r</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow><mo>,</mo></mtd><mtd></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mspace></mspace><mi>t</mi><mo>&gt;</mo><mn>0</mn><mo>,</mo></mtd></mtr></mtable></mrow></mfenced></math></span></span></span>in a smoothly bounded domain <span><math><mrow><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span>, where <span><math><mi>μ</mi></math></span>, <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>, <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, <span><math><mi>m</mi></math></span>, <span><math><mi>l</mi></math></span> are positive constants, <span><math><mrow><mi>r</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msup><mrow><mo>(</mo><mover><mrow><mi>Ω</mi></mrow><mo>¯</mo></mover><mo>×</mo><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>∩</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>×</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span> is a given nonnegative function, the functions <span><math><mrow><mi>f</mi><mo>,</mo><mspace></mspace><mi>g</mi><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msup><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mi>∞</mi><mo>]</mo></mrow></mrow></math></span> are assumed to behave essentially like <span><math><msup><mrow><mi>u</mi></mrow><mrow><mi>α</mi></mrow></msup></math></span>, <span><math><msup><mrow><mi>v</mi></mrow><mrow><mi>β</mi></mrow></msup></math></span> respectively, with some positive constants <span><math><mi>α</mi></math></span> and <span><math><mi>β</mi></math></span>. It is shown that the initial–boundary value problem possesses globally bounded classical solutions, provided that <span><math><mrow><mi>m</mi><mo>≥</mo><mn>1</mn></mrow></math></span> , <span><math><mrow><mi>l</mi><mo>≥</mo><mn>1</mn></mrow></math></span>, <span><math><mrow><mi>α</mi><mo>≤</mo><mfrac><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></math></span> and <span><math><mrow><mi>β</mi><mo>&lt;</mo><mfrac><mrow><mi>l</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></math></span>.</div></div>\",\"PeriodicalId\":49745,\"journal\":{\"name\":\"Nonlinear Analysis-Real World Applications\",\"volume\":\"83 \",\"pages\":\"Article 104261\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Real World Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1468121824002001\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Real World Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121824002001","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文主要研究觅食者-开发者模型的零流量初始边界值问题,其形式为 ut=Δu-∇⋅(u∇w)+μ1(u-um),x∈Ω,t>;0,vt=Δv-∇⋅(v∇u)+μ2(v-vl),x∈Ω,t>0,wt=Δw-f(u)w-g(v)w-μw+r(x,t),x∈Ω,t>;0,in a smooth bounded domain Ω⊂R2, where μ, μ1, μ2, m, l are positive constants, r(x,t)∈C1(Ω¯×[0,∞))∩L∞(Ω×(0,∞)) is a given nonnegative function、假设函数 f,g∈C1[0,∞]的性质分别类似于 uα,vβ,并有一些正常数 α 和 β。结果表明,只要 m≥1 , l≥1, α≤m2 和 β<l2, 初界值问题就具有全局有界经典解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global existence and boundedness of solutions to a two-dimensional forager-exploiter model with/without logistic source
This paper is focused on the zero-flux initial–boundary value problem for a forager-exploiter model of the form ut=Δu(uw)+μ1(uum),xΩ,t>0,vt=Δv(vu)+μ2(vvl),xΩ,t>0,wt=Δwf(u)wg(v)wμw+r(x,t),xΩ,t>0,in a smoothly bounded domain ΩR2, where μ, μ1, μ2, m, l are positive constants, r(x,t)C1(Ω¯×[0,))L(Ω×(0,)) is a given nonnegative function, the functions f,gC1[0,] are assumed to behave essentially like uα, vβ respectively, with some positive constants α and β. It is shown that the initial–boundary value problem possesses globally bounded classical solutions, provided that m1 , l1, αm2 and β<l2.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.80
自引率
5.00%
发文量
176
审稿时长
59 days
期刊介绍: Nonlinear Analysis: Real World Applications welcomes all research articles of the highest quality with special emphasis on applying techniques of nonlinear analysis to model and to treat nonlinear phenomena with which nature confronts us. Coverage of applications includes any branch of science and technology such as solid and fluid mechanics, material science, mathematical biology and chemistry, control theory, and inverse problems. The aim of Nonlinear Analysis: Real World Applications is to publish articles which are predominantly devoted to employing methods and techniques from analysis, including partial differential equations, functional analysis, dynamical systems and evolution equations, calculus of variations, and bifurcations theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信