用于高效电化学氢进化反应的化学生长 Bi2MoX6(X = O、S 和 Se)纳米结构

IF 4.1 3区 化学 Q1 CHEMISTRY, ANALYTICAL
Sandesh H. Narwade , Balaji G. Ghule , Nanasaheb M. Shinde , Rushikesh R. Suryawanshi , Kyeongnam Kang , Ji-Hyun Jang , Arvind H. Jadhav , Rajaram S. Mane
{"title":"用于高效电化学氢进化反应的化学生长 Bi2MoX6(X = O、S 和 Se)纳米结构","authors":"Sandesh H. Narwade ,&nbsp;Balaji G. Ghule ,&nbsp;Nanasaheb M. Shinde ,&nbsp;Rushikesh R. Suryawanshi ,&nbsp;Kyeongnam Kang ,&nbsp;Ji-Hyun Jang ,&nbsp;Arvind H. Jadhav ,&nbsp;Rajaram S. Mane","doi":"10.1016/j.jelechem.2024.118823","DOIUrl":null,"url":null,"abstract":"<div><div>Here, we present the fabrication of an effective and chemical bath deposition (CBD) of Bi<sub>2</sub>MoX<sub>6</sub> (X = O, S, and Se) electrocatalyst for efficient electrochemical hydrogen evolution reaction (HER) activity. To enhance the electrochemical activity of Bi<sub>2</sub>MoO<sub>6</sub> (BMO) electrode, the influence of sulfurization and selenization on the wet chemically synthesized BMO has been extensively studied here. These BMO, Bi<sub>2</sub>MoS<sub>6</sub> (BMS), and Bi<sub>2</sub>MoSe<sub>6</sub> (BMSe) nanostructured developed on nickel-foam are synthesized by a mild two-stage reaction process; a CBD following a sulfo-selenization procedure on BMO. Compared to BMO and BMS electrocatalysts, the BMSe has shown a higher HER activity through a lower overpotential about 120 mV at 10 mA cm<sup>−2</sup> and a lower value of Tafel slope (57 mV dec<sup>−1</sup>). Surface morphology analysis endows hydrangea flower-type petals, nanosheets, and <em>E. coli</em> bacteria-type surface morphologies for BMO, BMS, and BMSe electrocatalysts, respectively. Thus, this article gives an easy tactic for enhancing the electrochemical HER activity of the BMO through the process of sulfurization/selenization at room temperature (25–27 °C).</div></div>","PeriodicalId":355,"journal":{"name":"Journal of Electroanalytical Chemistry","volume":"976 ","pages":"Article 118823"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chemically grown Bi2MoX6 (X = O, S, and Se) nanostructures for efficient electrochemical hydrogen evolution reaction\",\"authors\":\"Sandesh H. Narwade ,&nbsp;Balaji G. Ghule ,&nbsp;Nanasaheb M. Shinde ,&nbsp;Rushikesh R. Suryawanshi ,&nbsp;Kyeongnam Kang ,&nbsp;Ji-Hyun Jang ,&nbsp;Arvind H. Jadhav ,&nbsp;Rajaram S. Mane\",\"doi\":\"10.1016/j.jelechem.2024.118823\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Here, we present the fabrication of an effective and chemical bath deposition (CBD) of Bi<sub>2</sub>MoX<sub>6</sub> (X = O, S, and Se) electrocatalyst for efficient electrochemical hydrogen evolution reaction (HER) activity. To enhance the electrochemical activity of Bi<sub>2</sub>MoO<sub>6</sub> (BMO) electrode, the influence of sulfurization and selenization on the wet chemically synthesized BMO has been extensively studied here. These BMO, Bi<sub>2</sub>MoS<sub>6</sub> (BMS), and Bi<sub>2</sub>MoSe<sub>6</sub> (BMSe) nanostructured developed on nickel-foam are synthesized by a mild two-stage reaction process; a CBD following a sulfo-selenization procedure on BMO. Compared to BMO and BMS electrocatalysts, the BMSe has shown a higher HER activity through a lower overpotential about 120 mV at 10 mA cm<sup>−2</sup> and a lower value of Tafel slope (57 mV dec<sup>−1</sup>). Surface morphology analysis endows hydrangea flower-type petals, nanosheets, and <em>E. coli</em> bacteria-type surface morphologies for BMO, BMS, and BMSe electrocatalysts, respectively. Thus, this article gives an easy tactic for enhancing the electrochemical HER activity of the BMO through the process of sulfurization/selenization at room temperature (25–27 °C).</div></div>\",\"PeriodicalId\":355,\"journal\":{\"name\":\"Journal of Electroanalytical Chemistry\",\"volume\":\"976 \",\"pages\":\"Article 118823\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electroanalytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1572665724008014\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electroanalytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572665724008014","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

在此,我们介绍了一种有效的化学浴沉积(CBD)Bi2MoX6(X = O、S 和 Se)电催化剂的制备方法,以实现高效的电化学氢进化反应(HER)活性。为了提高 Bi2MoO6(BMO)电极的电化学活性,本文广泛研究了硫化和硒化对湿化学合成 BMO 的影响。这些在镍泡沫上开发的 BMO、Bi2MoS6 (BMS) 和 Bi2MoSe6 (BMSe) 纳米结构是通过温和的两阶段反应过程合成的;在 BMO 的硫化-硒化过程之后是 CBD。与 BMO 和 BMS 电催化剂相比,BMSe 具有更高的 HER 活性,在 10 mA cm-2 时过电位更低,约为 120 mV,塔菲尔斜率值(57 mV dec-1)也更低。通过表面形态分析,BMO、BMS 和 BMSe 电催化剂分别呈现出绣球花型花瓣、纳米片和大肠杆菌型表面形态。因此,本文给出了在室温(25-27 °C)下通过硫化/软化过程提高 BMO 的电化学 HER 活性的简便方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Chemically grown Bi2MoX6 (X = O, S, and Se) nanostructures for efficient electrochemical hydrogen evolution reaction
Here, we present the fabrication of an effective and chemical bath deposition (CBD) of Bi2MoX6 (X = O, S, and Se) electrocatalyst for efficient electrochemical hydrogen evolution reaction (HER) activity. To enhance the electrochemical activity of Bi2MoO6 (BMO) electrode, the influence of sulfurization and selenization on the wet chemically synthesized BMO has been extensively studied here. These BMO, Bi2MoS6 (BMS), and Bi2MoSe6 (BMSe) nanostructured developed on nickel-foam are synthesized by a mild two-stage reaction process; a CBD following a sulfo-selenization procedure on BMO. Compared to BMO and BMS electrocatalysts, the BMSe has shown a higher HER activity through a lower overpotential about 120 mV at 10 mA cm−2 and a lower value of Tafel slope (57 mV dec−1). Surface morphology analysis endows hydrangea flower-type petals, nanosheets, and E. coli bacteria-type surface morphologies for BMO, BMS, and BMSe electrocatalysts, respectively. Thus, this article gives an easy tactic for enhancing the electrochemical HER activity of the BMO through the process of sulfurization/selenization at room temperature (25–27 °C).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.80
自引率
6.70%
发文量
912
审稿时长
2.4 months
期刊介绍: The Journal of Electroanalytical Chemistry is the foremost international journal devoted to the interdisciplinary subject of electrochemistry in all its aspects, theoretical as well as applied. Electrochemistry is a wide ranging area that is in a state of continuous evolution. Rather than compiling a long list of topics covered by the Journal, the editors would like to draw particular attention to the key issues of novelty, topicality and quality. Papers should present new and interesting electrochemical science in a way that is accessible to the reader. The presentation and discussion should be at a level that is consistent with the international status of the Journal. Reports describing the application of well-established techniques to problems that are essentially technical will not be accepted. Similarly, papers that report observations but fail to provide adequate interpretation will be rejected by the Editors. Papers dealing with technical electrochemistry should be submitted to other specialist journals unless the authors can show that their work provides substantially new insights into electrochemical processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信