Baojun Han , Shuqin Fang , Yu Wang, Jiajun Ma, Jinling Wu, Xiaoming Ma, Qingchun Lan
{"title":"源自二维铜基金属有机框架的功能性 Au@Cu/Cu2O/C 复合材料用于灵敏的无标记电化学免疫分析","authors":"Baojun Han , Shuqin Fang , Yu Wang, Jiajun Ma, Jinling Wu, Xiaoming Ma, Qingchun Lan","doi":"10.1016/j.jelechem.2024.118815","DOIUrl":null,"url":null,"abstract":"<div><div>Metal-organic frameworks (MOFs) face challenges in electrochemical sensing due to low conductivity and poor stability. Herein, we report the synthesis of MOFs-derived metal/carbon composites (Au@Cu/Cu<sub>2</sub>O/C) that exhibit synergistic effects by combining metallic and carbonaceous characteristics due to their hierarchical structures and metal contents. The Au@Cu/Cu<sub>2</sub>O/C composites were characterized using electron microscopy, X-ray diffraction, Raman spectroscopy, and X-ray photoelectron spectroscopy. These composites inherit the exceptional properties of the pristine MOFs while exhibiting a large specific surface area, high electrical conductivity and stability. As an excellent electrode material, the Au@Cu/Cu<sub>2</sub>O/C composites were biofunctionalized with streptavidin and a biotinylated antibody for use as a highly sensitive, label-free electrochemical immunosensor for the detection of the tumor marker prostate specific antigen (PSA). The fabricated immunosensor successfully detected PSA concentrations ranging from 0.05 to 60 ng/mL, with a detection limit of 0.01 ng/mL, showcasing high sensitivity comparable to other existing methods. This research provides a versatile and promising platform for developing advanced biosensors for disease diagnostics and further expanding the application of MOFs.</div></div>","PeriodicalId":355,"journal":{"name":"Journal of Electroanalytical Chemistry","volume":"976 ","pages":"Article 118815"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Functional Au@Cu/Cu2O/C composites derived from 2D Cu-based metal–organic framework for sensitive label-free electrochemical immunoassay\",\"authors\":\"Baojun Han , Shuqin Fang , Yu Wang, Jiajun Ma, Jinling Wu, Xiaoming Ma, Qingchun Lan\",\"doi\":\"10.1016/j.jelechem.2024.118815\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Metal-organic frameworks (MOFs) face challenges in electrochemical sensing due to low conductivity and poor stability. Herein, we report the synthesis of MOFs-derived metal/carbon composites (Au@Cu/Cu<sub>2</sub>O/C) that exhibit synergistic effects by combining metallic and carbonaceous characteristics due to their hierarchical structures and metal contents. The Au@Cu/Cu<sub>2</sub>O/C composites were characterized using electron microscopy, X-ray diffraction, Raman spectroscopy, and X-ray photoelectron spectroscopy. These composites inherit the exceptional properties of the pristine MOFs while exhibiting a large specific surface area, high electrical conductivity and stability. As an excellent electrode material, the Au@Cu/Cu<sub>2</sub>O/C composites were biofunctionalized with streptavidin and a biotinylated antibody for use as a highly sensitive, label-free electrochemical immunosensor for the detection of the tumor marker prostate specific antigen (PSA). The fabricated immunosensor successfully detected PSA concentrations ranging from 0.05 to 60 ng/mL, with a detection limit of 0.01 ng/mL, showcasing high sensitivity comparable to other existing methods. This research provides a versatile and promising platform for developing advanced biosensors for disease diagnostics and further expanding the application of MOFs.</div></div>\",\"PeriodicalId\":355,\"journal\":{\"name\":\"Journal of Electroanalytical Chemistry\",\"volume\":\"976 \",\"pages\":\"Article 118815\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electroanalytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1572665724007938\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electroanalytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572665724007938","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Functional Au@Cu/Cu2O/C composites derived from 2D Cu-based metal–organic framework for sensitive label-free electrochemical immunoassay
Metal-organic frameworks (MOFs) face challenges in electrochemical sensing due to low conductivity and poor stability. Herein, we report the synthesis of MOFs-derived metal/carbon composites (Au@Cu/Cu2O/C) that exhibit synergistic effects by combining metallic and carbonaceous characteristics due to their hierarchical structures and metal contents. The Au@Cu/Cu2O/C composites were characterized using electron microscopy, X-ray diffraction, Raman spectroscopy, and X-ray photoelectron spectroscopy. These composites inherit the exceptional properties of the pristine MOFs while exhibiting a large specific surface area, high electrical conductivity and stability. As an excellent electrode material, the Au@Cu/Cu2O/C composites were biofunctionalized with streptavidin and a biotinylated antibody for use as a highly sensitive, label-free electrochemical immunosensor for the detection of the tumor marker prostate specific antigen (PSA). The fabricated immunosensor successfully detected PSA concentrations ranging from 0.05 to 60 ng/mL, with a detection limit of 0.01 ng/mL, showcasing high sensitivity comparable to other existing methods. This research provides a versatile and promising platform for developing advanced biosensors for disease diagnostics and further expanding the application of MOFs.
期刊介绍:
The Journal of Electroanalytical Chemistry is the foremost international journal devoted to the interdisciplinary subject of electrochemistry in all its aspects, theoretical as well as applied.
Electrochemistry is a wide ranging area that is in a state of continuous evolution. Rather than compiling a long list of topics covered by the Journal, the editors would like to draw particular attention to the key issues of novelty, topicality and quality. Papers should present new and interesting electrochemical science in a way that is accessible to the reader. The presentation and discussion should be at a level that is consistent with the international status of the Journal. Reports describing the application of well-established techniques to problems that are essentially technical will not be accepted. Similarly, papers that report observations but fail to provide adequate interpretation will be rejected by the Editors. Papers dealing with technical electrochemistry should be submitted to other specialist journals unless the authors can show that their work provides substantially new insights into electrochemical processes.