不同混合比下恒定热流条件下新型混合纳米流体传热和摩擦因数分析的实验和机器学习见解

IF 4.9 2区 工程技术 Q1 ENGINEERING, MECHANICAL
Praveen Kumar Kanti , V. Vicki Wanatasanappan , Prabhakar Sharma , Nejla Mahjoub Said , K.V. Sharma
{"title":"不同混合比下恒定热流条件下新型混合纳米流体传热和摩擦因数分析的实验和机器学习见解","authors":"Praveen Kumar Kanti ,&nbsp;V. Vicki Wanatasanappan ,&nbsp;Prabhakar Sharma ,&nbsp;Nejla Mahjoub Said ,&nbsp;K.V. Sharma","doi":"10.1016/j.ijthermalsci.2024.109548","DOIUrl":null,"url":null,"abstract":"<div><div>This study explores the combined effects of aluminum oxide (Al₂O₃)/graphene oxide (GO) hybrid nanofluids in 50:50 and 80:20 ratios, offering a notable improvement over conventional Al₂O₃ or GO nanofluids. It delivers a thorough comparison of thermophysical properties such as thermal conductivity and viscosity and heat transfer performance across water, Al₂O₃ nanofluids, and the Al₂O₃/GO hybrids. Nanofluids at 0.1–0.5 % volume concentrations were tested in a horizontal circular pipe under constant heat flux and turbulent flow with an inlet temperature of 60 °C. The maximum <em>Nu</em> enhancements of 64, 56 and 41 % were noted for Al₂O₃/GO (50:50), Al₂O₃/GO (80:20), and Al₂O₃ nanofluids, respectively at 0.5 vol%, compared to water. The maximum pressure drop of Al<sub>2</sub>O<sub>3</sub>/GO (50:50) nanofluid is 5.64 and 8.3 % greater than that of Al<sub>2</sub>O<sub>3</sub>/GO (80:20) and Al<sub>2</sub>O<sub>3</sub> nanofluid, respectively at 0.5 vol%. The peak thermal performance index of 1.56, 1.48, and 1.33 is observed for Al₂O₃/GO (50:50), Al₂O₃/GO (80:20), and Al₂O₃ nanofluids. The integration of a multi-layer perceptron artificial neural network further enhances accuracy in predicting thermal performance, surpassing the precision of conventional empirical models. The adopted model showed excellent predictive accuracy, with correlation coefficients of 0.98493 in training, 0.9837 in validation, and 0.98698 in testing.</div></div>","PeriodicalId":341,"journal":{"name":"International Journal of Thermal Sciences","volume":"209 ","pages":"Article 109548"},"PeriodicalIF":4.9000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental and machine learning insights on heat transfer and friction factor analysis of novel hybrid nanofluids subjected to constant heat flux at various mixture ratios\",\"authors\":\"Praveen Kumar Kanti ,&nbsp;V. Vicki Wanatasanappan ,&nbsp;Prabhakar Sharma ,&nbsp;Nejla Mahjoub Said ,&nbsp;K.V. Sharma\",\"doi\":\"10.1016/j.ijthermalsci.2024.109548\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study explores the combined effects of aluminum oxide (Al₂O₃)/graphene oxide (GO) hybrid nanofluids in 50:50 and 80:20 ratios, offering a notable improvement over conventional Al₂O₃ or GO nanofluids. It delivers a thorough comparison of thermophysical properties such as thermal conductivity and viscosity and heat transfer performance across water, Al₂O₃ nanofluids, and the Al₂O₃/GO hybrids. Nanofluids at 0.1–0.5 % volume concentrations were tested in a horizontal circular pipe under constant heat flux and turbulent flow with an inlet temperature of 60 °C. The maximum <em>Nu</em> enhancements of 64, 56 and 41 % were noted for Al₂O₃/GO (50:50), Al₂O₃/GO (80:20), and Al₂O₃ nanofluids, respectively at 0.5 vol%, compared to water. The maximum pressure drop of Al<sub>2</sub>O<sub>3</sub>/GO (50:50) nanofluid is 5.64 and 8.3 % greater than that of Al<sub>2</sub>O<sub>3</sub>/GO (80:20) and Al<sub>2</sub>O<sub>3</sub> nanofluid, respectively at 0.5 vol%. The peak thermal performance index of 1.56, 1.48, and 1.33 is observed for Al₂O₃/GO (50:50), Al₂O₃/GO (80:20), and Al₂O₃ nanofluids. The integration of a multi-layer perceptron artificial neural network further enhances accuracy in predicting thermal performance, surpassing the precision of conventional empirical models. The adopted model showed excellent predictive accuracy, with correlation coefficients of 0.98493 in training, 0.9837 in validation, and 0.98698 in testing.</div></div>\",\"PeriodicalId\":341,\"journal\":{\"name\":\"International Journal of Thermal Sciences\",\"volume\":\"209 \",\"pages\":\"Article 109548\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Thermal Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1290072924006707\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermal Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1290072924006707","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了氧化铝(Al₂O₃)/氧化石墨烯(GO)混合纳米流体在 50:50 和 80:20 比例下的综合效应,与传统的 Al₂O₃ 或 GO 纳米流体相比,这种混合流体具有显著的改进。该研究全面比较了水、铝₂O₃ 纳米流体以及铝₂O₃/GO 混合流体的热物理性质(如热导率和粘度)和传热性能。在入口温度为 60 °C 的恒定热通量和紊流条件下,在水平圆管中测试了体积浓度为 0.1-0.5 % 的纳米流体。与水相比,Al₂O₃/GO(50:50)、Al₂O₃/GO(80:20)和 Al₂O₃纳米流体(体积浓度为 0.5%)的最大 Nu 增强率分别为 64%、56% 和 41%。在 0.5 Vol% 的条件下,Al2O3/GO (50:50) 纳米流体的最大压降分别比 Al2O3/GO (80:20) 纳米流体和 Al2O3 纳米流体大 5.64 % 和 8.3 %。铝₂O₃/GO(50:50)、铝₂O₃/GO(80:20)和铝₂O₃纳米流体的热性能指数峰值分别为 1.56、1.48 和 1.33。多层感知器人工神经网络的集成进一步提高了热性能预测的精度,超过了传统经验模型的精度。所采用的模型显示出卓越的预测精度,训练相关系数为 0.98493,验证相关系数为 0.9837,测试相关系数为 0.98698。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental and machine learning insights on heat transfer and friction factor analysis of novel hybrid nanofluids subjected to constant heat flux at various mixture ratios
This study explores the combined effects of aluminum oxide (Al₂O₃)/graphene oxide (GO) hybrid nanofluids in 50:50 and 80:20 ratios, offering a notable improvement over conventional Al₂O₃ or GO nanofluids. It delivers a thorough comparison of thermophysical properties such as thermal conductivity and viscosity and heat transfer performance across water, Al₂O₃ nanofluids, and the Al₂O₃/GO hybrids. Nanofluids at 0.1–0.5 % volume concentrations were tested in a horizontal circular pipe under constant heat flux and turbulent flow with an inlet temperature of 60 °C. The maximum Nu enhancements of 64, 56 and 41 % were noted for Al₂O₃/GO (50:50), Al₂O₃/GO (80:20), and Al₂O₃ nanofluids, respectively at 0.5 vol%, compared to water. The maximum pressure drop of Al2O3/GO (50:50) nanofluid is 5.64 and 8.3 % greater than that of Al2O3/GO (80:20) and Al2O3 nanofluid, respectively at 0.5 vol%. The peak thermal performance index of 1.56, 1.48, and 1.33 is observed for Al₂O₃/GO (50:50), Al₂O₃/GO (80:20), and Al₂O₃ nanofluids. The integration of a multi-layer perceptron artificial neural network further enhances accuracy in predicting thermal performance, surpassing the precision of conventional empirical models. The adopted model showed excellent predictive accuracy, with correlation coefficients of 0.98493 in training, 0.9837 in validation, and 0.98698 in testing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Thermal Sciences
International Journal of Thermal Sciences 工程技术-工程:机械
CiteScore
8.10
自引率
11.10%
发文量
531
审稿时长
55 days
期刊介绍: The International Journal of Thermal Sciences is a journal devoted to the publication of fundamental studies on the physics of transfer processes in general, with an emphasis on thermal aspects and also applied research on various processes, energy systems and the environment. Articles are published in English and French, and are subject to peer review. The fundamental subjects considered within the scope of the journal are: * Heat and relevant mass transfer at all scales (nano, micro and macro) and in all types of material (heterogeneous, composites, biological,...) and fluid flow * Forced, natural or mixed convection in reactive or non-reactive media * Single or multi–phase fluid flow with or without phase change * Near–and far–field radiative heat transfer * Combined modes of heat transfer in complex systems (for example, plasmas, biological, geological,...) * Multiscale modelling The applied research topics include: * Heat exchangers, heat pipes, cooling processes * Transport phenomena taking place in industrial processes (chemical, food and agricultural, metallurgical, space and aeronautical, automobile industries) * Nano–and micro–technology for energy, space, biosystems and devices * Heat transport analysis in advanced systems * Impact of energy–related processes on environment, and emerging energy systems The study of thermophysical properties of materials and fluids, thermal measurement techniques, inverse methods, and the developments of experimental methods are within the scope of the International Journal of Thermal Sciences which also covers the modelling, and numerical methods applied to thermal transfer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信