{"title":"移动储能预定位的新型稳健优化方法","authors":"Hening Yuan, Yueqing Shen, Xuehua Xie","doi":"10.1016/j.apenergy.2024.124810","DOIUrl":null,"url":null,"abstract":"<div><div>The traditional power distribution network is transitioning to an active electrical distribution network due to the integration of distributed energy resources. Simultaneously, the increasing occurrence of extreme weather requires power networks to be more resilient. Distributed energy resources, especially mobile energy storage systems (MESS), play a crucial role in enhancing the resilience of electrical distribution networks. However, research is lacking on pre-positioning of MESS to enhance resilience, efficiency and electrical resource utilization in post-disaster operations. To address these issues, this paper introduces a proactive MESS pre-positioning method in active electrical distribution networks considering the uncertainties of distributed generation output. Firstly, the flexible resources in active distribution networks are modeled, including distributed generation, MESS and Electric Vehicles. Then, a robust optimization model is established for the pre-positioning of MESS considering the PV output uncertainty, where the big-M method and the column constraint generation algorithm are used to calculate the optimal capacity and location of the MESS. Finally, the effectiveness of the MESS pre-positioning model is verified using the IEEE 33-node system and the IEEE 141-node system, respectively. The simulation results show that the load loss at most of the nodes is significantly reduced and the total system cost is reduced by 17.65% compared with the case of fixed MESS access location. The results also show that when the number of MESS is low, each additional MESS unit reduces the total load shedding cost by about 20%. Moreover, the proposed robust optimization model for MESS pre-positioning is also effective in large-scale systems.</div></div>","PeriodicalId":246,"journal":{"name":"Applied Energy","volume":"379 ","pages":"Article 124810"},"PeriodicalIF":10.1000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel robust optimization method for mobile energy storage pre-positioning\",\"authors\":\"Hening Yuan, Yueqing Shen, Xuehua Xie\",\"doi\":\"10.1016/j.apenergy.2024.124810\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The traditional power distribution network is transitioning to an active electrical distribution network due to the integration of distributed energy resources. Simultaneously, the increasing occurrence of extreme weather requires power networks to be more resilient. Distributed energy resources, especially mobile energy storage systems (MESS), play a crucial role in enhancing the resilience of electrical distribution networks. However, research is lacking on pre-positioning of MESS to enhance resilience, efficiency and electrical resource utilization in post-disaster operations. To address these issues, this paper introduces a proactive MESS pre-positioning method in active electrical distribution networks considering the uncertainties of distributed generation output. Firstly, the flexible resources in active distribution networks are modeled, including distributed generation, MESS and Electric Vehicles. Then, a robust optimization model is established for the pre-positioning of MESS considering the PV output uncertainty, where the big-M method and the column constraint generation algorithm are used to calculate the optimal capacity and location of the MESS. Finally, the effectiveness of the MESS pre-positioning model is verified using the IEEE 33-node system and the IEEE 141-node system, respectively. The simulation results show that the load loss at most of the nodes is significantly reduced and the total system cost is reduced by 17.65% compared with the case of fixed MESS access location. The results also show that when the number of MESS is low, each additional MESS unit reduces the total load shedding cost by about 20%. Moreover, the proposed robust optimization model for MESS pre-positioning is also effective in large-scale systems.</div></div>\",\"PeriodicalId\":246,\"journal\":{\"name\":\"Applied Energy\",\"volume\":\"379 \",\"pages\":\"Article 124810\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0306261924021937\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306261924021937","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
A novel robust optimization method for mobile energy storage pre-positioning
The traditional power distribution network is transitioning to an active electrical distribution network due to the integration of distributed energy resources. Simultaneously, the increasing occurrence of extreme weather requires power networks to be more resilient. Distributed energy resources, especially mobile energy storage systems (MESS), play a crucial role in enhancing the resilience of electrical distribution networks. However, research is lacking on pre-positioning of MESS to enhance resilience, efficiency and electrical resource utilization in post-disaster operations. To address these issues, this paper introduces a proactive MESS pre-positioning method in active electrical distribution networks considering the uncertainties of distributed generation output. Firstly, the flexible resources in active distribution networks are modeled, including distributed generation, MESS and Electric Vehicles. Then, a robust optimization model is established for the pre-positioning of MESS considering the PV output uncertainty, where the big-M method and the column constraint generation algorithm are used to calculate the optimal capacity and location of the MESS. Finally, the effectiveness of the MESS pre-positioning model is verified using the IEEE 33-node system and the IEEE 141-node system, respectively. The simulation results show that the load loss at most of the nodes is significantly reduced and the total system cost is reduced by 17.65% compared with the case of fixed MESS access location. The results also show that when the number of MESS is low, each additional MESS unit reduces the total load shedding cost by about 20%. Moreover, the proposed robust optimization model for MESS pre-positioning is also effective in large-scale systems.
期刊介绍:
Applied Energy serves as a platform for sharing innovations, research, development, and demonstrations in energy conversion, conservation, and sustainable energy systems. The journal covers topics such as optimal energy resource use, environmental pollutant mitigation, and energy process analysis. It welcomes original papers, review articles, technical notes, and letters to the editor. Authors are encouraged to submit manuscripts that bridge the gap between research, development, and implementation. The journal addresses a wide spectrum of topics, including fossil and renewable energy technologies, energy economics, and environmental impacts. Applied Energy also explores modeling and forecasting, conservation strategies, and the social and economic implications of energy policies, including climate change mitigation. It is complemented by the open-access journal Advances in Applied Energy.