Sharareh Shahroudi , Amir Parvinnasab , Erfan Salahinejad , Shaghayegh Abdi , Sarah Rajabi , Lobat Tayebi
{"title":"涂有万古霉素海藻酸盐的 3D 打印壳聚糖-氧化铈敷料在慢性伤口管理中的功效","authors":"Sharareh Shahroudi , Amir Parvinnasab , Erfan Salahinejad , Shaghayegh Abdi , Sarah Rajabi , Lobat Tayebi","doi":"10.1016/j.carbpol.2024.123036","DOIUrl":null,"url":null,"abstract":"<div><div>Multifunctional wound dressings with antibacterial and antioxidant properties hold significant promise for treating chronic wounds; however, achieving a balance of these characteristics while maintaining biocompatibility is challenging. To enhance this balance, this study focuses on the design and development of 3D-printed chitosan-matrix composite scaffolds, which are incorporated with varying amounts of cerium oxide nanoparticles (0, 1, 3, 5, and 7 wt%) and subsequently coated with a vancomycin-loaded alginate layer. The structure, antibiotic drug delivery kinetics, biodegradation, swelling, biocompatibility, antibacterial, antioxidant, and cell migration behaviors of the fabricated dressings were evaluated <em>in-vitro</em>. The findings reveal that all of the formulations demonstrated a robust antibacterial effect against <em>S. aureus</em> bacterial strains in disk diffusion tests. Furthermore, the dressings containing cerium oxide nanoparticles exhibited proper antioxidant capabilities, with over 78.1 % reactive oxygen species (ROS) scavenging efficiency achieved with 7 % cerium oxide nanoparticles. The sample containing 5 % cerium oxide nanoparticles was identified as the optimal formulation, characterized by the most favorable cell biocompatibility, an ROS scavenging ability of over 73.4 %, and the potential to close the wound bed within 24 h. This study highlights that these dressings are promising for managing chronic wounds by preventing infection and oxidative stress in a correct therapeutic sequence.</div></div>","PeriodicalId":261,"journal":{"name":"Carbohydrate Polymers","volume":"349 ","pages":"Article 123036"},"PeriodicalIF":10.7000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficacy of 3D-printed chitosan‑cerium oxide dressings coated with vancomycin-loaded alginate for chronic wounds management\",\"authors\":\"Sharareh Shahroudi , Amir Parvinnasab , Erfan Salahinejad , Shaghayegh Abdi , Sarah Rajabi , Lobat Tayebi\",\"doi\":\"10.1016/j.carbpol.2024.123036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Multifunctional wound dressings with antibacterial and antioxidant properties hold significant promise for treating chronic wounds; however, achieving a balance of these characteristics while maintaining biocompatibility is challenging. To enhance this balance, this study focuses on the design and development of 3D-printed chitosan-matrix composite scaffolds, which are incorporated with varying amounts of cerium oxide nanoparticles (0, 1, 3, 5, and 7 wt%) and subsequently coated with a vancomycin-loaded alginate layer. The structure, antibiotic drug delivery kinetics, biodegradation, swelling, biocompatibility, antibacterial, antioxidant, and cell migration behaviors of the fabricated dressings were evaluated <em>in-vitro</em>. The findings reveal that all of the formulations demonstrated a robust antibacterial effect against <em>S. aureus</em> bacterial strains in disk diffusion tests. Furthermore, the dressings containing cerium oxide nanoparticles exhibited proper antioxidant capabilities, with over 78.1 % reactive oxygen species (ROS) scavenging efficiency achieved with 7 % cerium oxide nanoparticles. The sample containing 5 % cerium oxide nanoparticles was identified as the optimal formulation, characterized by the most favorable cell biocompatibility, an ROS scavenging ability of over 73.4 %, and the potential to close the wound bed within 24 h. This study highlights that these dressings are promising for managing chronic wounds by preventing infection and oxidative stress in a correct therapeutic sequence.</div></div>\",\"PeriodicalId\":261,\"journal\":{\"name\":\"Carbohydrate Polymers\",\"volume\":\"349 \",\"pages\":\"Article 123036\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbohydrate Polymers\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0144861724012621\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Polymers","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0144861724012621","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Efficacy of 3D-printed chitosan‑cerium oxide dressings coated with vancomycin-loaded alginate for chronic wounds management
Multifunctional wound dressings with antibacterial and antioxidant properties hold significant promise for treating chronic wounds; however, achieving a balance of these characteristics while maintaining biocompatibility is challenging. To enhance this balance, this study focuses on the design and development of 3D-printed chitosan-matrix composite scaffolds, which are incorporated with varying amounts of cerium oxide nanoparticles (0, 1, 3, 5, and 7 wt%) and subsequently coated with a vancomycin-loaded alginate layer. The structure, antibiotic drug delivery kinetics, biodegradation, swelling, biocompatibility, antibacterial, antioxidant, and cell migration behaviors of the fabricated dressings were evaluated in-vitro. The findings reveal that all of the formulations demonstrated a robust antibacterial effect against S. aureus bacterial strains in disk diffusion tests. Furthermore, the dressings containing cerium oxide nanoparticles exhibited proper antioxidant capabilities, with over 78.1 % reactive oxygen species (ROS) scavenging efficiency achieved with 7 % cerium oxide nanoparticles. The sample containing 5 % cerium oxide nanoparticles was identified as the optimal formulation, characterized by the most favorable cell biocompatibility, an ROS scavenging ability of over 73.4 %, and the potential to close the wound bed within 24 h. This study highlights that these dressings are promising for managing chronic wounds by preventing infection and oxidative stress in a correct therapeutic sequence.
期刊介绍:
Carbohydrate Polymers stands as a prominent journal in the glycoscience field, dedicated to exploring and harnessing the potential of polysaccharides with applications spanning bioenergy, bioplastics, biomaterials, biorefining, chemistry, drug delivery, food, health, nanotechnology, packaging, paper, pharmaceuticals, medicine, oil recovery, textiles, tissue engineering, wood, and various aspects of glycoscience.
The journal emphasizes the central role of well-characterized carbohydrate polymers, highlighting their significance as the primary focus rather than a peripheral topic. Each paper must prominently feature at least one named carbohydrate polymer, evident in both citation and title, with a commitment to innovative research that advances scientific knowledge.