Young Woo Song , Jeehye Nam , Jeongin Kim , Youjin Lee , Jaibyung Choi , Hye Su Min , Huisuk Yang , Yoeseph Cho , Sungmin Hwang , Junghyun Son , Ui-Won Jung , Hyungil Jung
{"title":"基于透明质酸的米诺环素溶解微针:治疗牙周炎的局部米诺环素给药创新","authors":"Young Woo Song , Jeehye Nam , Jeongin Kim , Youjin Lee , Jaibyung Choi , Hye Su Min , Huisuk Yang , Yoeseph Cho , Sungmin Hwang , Junghyun Son , Ui-Won Jung , Hyungil Jung","doi":"10.1016/j.carbpol.2024.122976","DOIUrl":null,"url":null,"abstract":"<div><div>Periodontitis is a prevalent inflammatory disease that affects tooth-supporting tissues and is induced by complex polymicrobial dental plaques. Prior treatments, including topical antibiotic ointments, have faced difficulties in tissue permeability issues. Although dissolving microneedle (DMN) has been proposed as a painless and highly efficient transdermal drug delivery system to resolve this challenge, minocycline, widely used for the treatment of periodontitis, is light-sensitive, making it challenging to maintain its stability using conventional fabrication methods. Our hyaluronic acid-based minocycline-loaded dissolving microneedle (HAM-DMN) was designed utilizing an innovative light-blocking strategy, preserving 94.4 % of minocycline's stability, as confirmed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. HAM-DMNs demonstrated antimicrobial efficacy in <em>in vitro</em> zone of inhibition tests with <em>Streptococcus mutans</em> strains and provided enhanced local delivery of minocycline to porcine oral gingival mucosa at concentrations 6.1 times higher than those of commercial ointments. <em>In vivo</em> studies in periodontitis-induced rat models showed that HAM-DMNs reduced levels of junctional epithelium more effectively than control and blank DMN groups, indicating enhanced treatment efficacy. HAM-DMN is a novel local delivery system developed to overcome the limitations of systemic delivery and conventional topical treatment. We suggest that HAM-DMNs can replace injections for the treatment of intraoral mucosal and systemic diseases.</div></div>","PeriodicalId":261,"journal":{"name":"Carbohydrate Polymers","volume":"349 ","pages":"Article 122976"},"PeriodicalIF":10.7000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hyaluronic acid-based minocycline-loaded dissolving microneedle: Innovation in local minocycline delivery for periodontitis\",\"authors\":\"Young Woo Song , Jeehye Nam , Jeongin Kim , Youjin Lee , Jaibyung Choi , Hye Su Min , Huisuk Yang , Yoeseph Cho , Sungmin Hwang , Junghyun Son , Ui-Won Jung , Hyungil Jung\",\"doi\":\"10.1016/j.carbpol.2024.122976\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Periodontitis is a prevalent inflammatory disease that affects tooth-supporting tissues and is induced by complex polymicrobial dental plaques. Prior treatments, including topical antibiotic ointments, have faced difficulties in tissue permeability issues. Although dissolving microneedle (DMN) has been proposed as a painless and highly efficient transdermal drug delivery system to resolve this challenge, minocycline, widely used for the treatment of periodontitis, is light-sensitive, making it challenging to maintain its stability using conventional fabrication methods. Our hyaluronic acid-based minocycline-loaded dissolving microneedle (HAM-DMN) was designed utilizing an innovative light-blocking strategy, preserving 94.4 % of minocycline's stability, as confirmed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. HAM-DMNs demonstrated antimicrobial efficacy in <em>in vitro</em> zone of inhibition tests with <em>Streptococcus mutans</em> strains and provided enhanced local delivery of minocycline to porcine oral gingival mucosa at concentrations 6.1 times higher than those of commercial ointments. <em>In vivo</em> studies in periodontitis-induced rat models showed that HAM-DMNs reduced levels of junctional epithelium more effectively than control and blank DMN groups, indicating enhanced treatment efficacy. HAM-DMN is a novel local delivery system developed to overcome the limitations of systemic delivery and conventional topical treatment. We suggest that HAM-DMNs can replace injections for the treatment of intraoral mucosal and systemic diseases.</div></div>\",\"PeriodicalId\":261,\"journal\":{\"name\":\"Carbohydrate Polymers\",\"volume\":\"349 \",\"pages\":\"Article 122976\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbohydrate Polymers\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0144861724012025\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Polymers","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0144861724012025","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Hyaluronic acid-based minocycline-loaded dissolving microneedle: Innovation in local minocycline delivery for periodontitis
Periodontitis is a prevalent inflammatory disease that affects tooth-supporting tissues and is induced by complex polymicrobial dental plaques. Prior treatments, including topical antibiotic ointments, have faced difficulties in tissue permeability issues. Although dissolving microneedle (DMN) has been proposed as a painless and highly efficient transdermal drug delivery system to resolve this challenge, minocycline, widely used for the treatment of periodontitis, is light-sensitive, making it challenging to maintain its stability using conventional fabrication methods. Our hyaluronic acid-based minocycline-loaded dissolving microneedle (HAM-DMN) was designed utilizing an innovative light-blocking strategy, preserving 94.4 % of minocycline's stability, as confirmed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. HAM-DMNs demonstrated antimicrobial efficacy in in vitro zone of inhibition tests with Streptococcus mutans strains and provided enhanced local delivery of minocycline to porcine oral gingival mucosa at concentrations 6.1 times higher than those of commercial ointments. In vivo studies in periodontitis-induced rat models showed that HAM-DMNs reduced levels of junctional epithelium more effectively than control and blank DMN groups, indicating enhanced treatment efficacy. HAM-DMN is a novel local delivery system developed to overcome the limitations of systemic delivery and conventional topical treatment. We suggest that HAM-DMNs can replace injections for the treatment of intraoral mucosal and systemic diseases.
期刊介绍:
Carbohydrate Polymers stands as a prominent journal in the glycoscience field, dedicated to exploring and harnessing the potential of polysaccharides with applications spanning bioenergy, bioplastics, biomaterials, biorefining, chemistry, drug delivery, food, health, nanotechnology, packaging, paper, pharmaceuticals, medicine, oil recovery, textiles, tissue engineering, wood, and various aspects of glycoscience.
The journal emphasizes the central role of well-characterized carbohydrate polymers, highlighting their significance as the primary focus rather than a peripheral topic. Each paper must prominently feature at least one named carbohydrate polymer, evident in both citation and title, with a commitment to innovative research that advances scientific knowledge.