Yang Wan , Han Du , Lei Yuan , Xuesong Xu , Haida Tang , Jianfeng Zhang
{"title":"探索高密度城市街区环境特征对地表温度的影响及其空间异质性","authors":"Yang Wan , Han Du , Lei Yuan , Xuesong Xu , Haida Tang , Jianfeng Zhang","doi":"10.1016/j.scs.2024.105973","DOIUrl":null,"url":null,"abstract":"<div><div>A fundamental understanding of the spatial change trends and driving mechanisms of land surface temperature (LST) under urbanization is a prerequisite for the development of effective strategies to mitigate the urban heat island effect. In this study, the built-up blocks of Shenzhen, a high-density city in China, were selected as the unit of analysis. Multi-source datasets were utilized to calculate a total of 44 environmental characteristic indicators, covering four categories. In order to comprehensively analyze the influence of each environmental feature indicator on LST and spatial heterogeneity, MLR, XGBoost and MGWR models were constructed. Furthermore, the nonlinear relationship between the variables was investigated using the SHAP method. The results demonstrated that the predictive efficacy of the MGWR and XGBoost models was markedly superior to that of the MLR model. The percentage cover of forest, the average elevation, NDVI, the frontal area index and the standard deviation of building height were identified as the primary determinants of the LST. These factors account for >52 % to the explanation of the LST distribution. The effects of the majority of landscape pattern, building form and street view indicators on LST exhibited spatial heterogeneity. Furthermore, the indicators also showed nonlinear patterns and threshold effects on LST. The findings offer valuable insights for enhancing the urban thermal environment, particularly in high-density urban areas.</div></div>","PeriodicalId":48659,"journal":{"name":"Sustainable Cities and Society","volume":"118 ","pages":"Article 105973"},"PeriodicalIF":10.5000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the influence of block environmental characteristics on land surface temperature and its spatial heterogeneity for a high-density city\",\"authors\":\"Yang Wan , Han Du , Lei Yuan , Xuesong Xu , Haida Tang , Jianfeng Zhang\",\"doi\":\"10.1016/j.scs.2024.105973\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A fundamental understanding of the spatial change trends and driving mechanisms of land surface temperature (LST) under urbanization is a prerequisite for the development of effective strategies to mitigate the urban heat island effect. In this study, the built-up blocks of Shenzhen, a high-density city in China, were selected as the unit of analysis. Multi-source datasets were utilized to calculate a total of 44 environmental characteristic indicators, covering four categories. In order to comprehensively analyze the influence of each environmental feature indicator on LST and spatial heterogeneity, MLR, XGBoost and MGWR models were constructed. Furthermore, the nonlinear relationship between the variables was investigated using the SHAP method. The results demonstrated that the predictive efficacy of the MGWR and XGBoost models was markedly superior to that of the MLR model. The percentage cover of forest, the average elevation, NDVI, the frontal area index and the standard deviation of building height were identified as the primary determinants of the LST. These factors account for >52 % to the explanation of the LST distribution. The effects of the majority of landscape pattern, building form and street view indicators on LST exhibited spatial heterogeneity. Furthermore, the indicators also showed nonlinear patterns and threshold effects on LST. The findings offer valuable insights for enhancing the urban thermal environment, particularly in high-density urban areas.</div></div>\",\"PeriodicalId\":48659,\"journal\":{\"name\":\"Sustainable Cities and Society\",\"volume\":\"118 \",\"pages\":\"Article 105973\"},\"PeriodicalIF\":10.5000,\"publicationDate\":\"2024-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Cities and Society\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2210670724007972\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Cities and Society","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210670724007972","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Exploring the influence of block environmental characteristics on land surface temperature and its spatial heterogeneity for a high-density city
A fundamental understanding of the spatial change trends and driving mechanisms of land surface temperature (LST) under urbanization is a prerequisite for the development of effective strategies to mitigate the urban heat island effect. In this study, the built-up blocks of Shenzhen, a high-density city in China, were selected as the unit of analysis. Multi-source datasets were utilized to calculate a total of 44 environmental characteristic indicators, covering four categories. In order to comprehensively analyze the influence of each environmental feature indicator on LST and spatial heterogeneity, MLR, XGBoost and MGWR models were constructed. Furthermore, the nonlinear relationship between the variables was investigated using the SHAP method. The results demonstrated that the predictive efficacy of the MGWR and XGBoost models was markedly superior to that of the MLR model. The percentage cover of forest, the average elevation, NDVI, the frontal area index and the standard deviation of building height were identified as the primary determinants of the LST. These factors account for >52 % to the explanation of the LST distribution. The effects of the majority of landscape pattern, building form and street view indicators on LST exhibited spatial heterogeneity. Furthermore, the indicators also showed nonlinear patterns and threshold effects on LST. The findings offer valuable insights for enhancing the urban thermal environment, particularly in high-density urban areas.
期刊介绍:
Sustainable Cities and Society (SCS) is an international journal that focuses on fundamental and applied research to promote environmentally sustainable and socially resilient cities. The journal welcomes cross-cutting, multi-disciplinary research in various areas, including:
1. Smart cities and resilient environments;
2. Alternative/clean energy sources, energy distribution, distributed energy generation, and energy demand reduction/management;
3. Monitoring and improving air quality in built environment and cities (e.g., healthy built environment and air quality management);
4. Energy efficient, low/zero carbon, and green buildings/communities;
5. Climate change mitigation and adaptation in urban environments;
6. Green infrastructure and BMPs;
7. Environmental Footprint accounting and management;
8. Urban agriculture and forestry;
9. ICT, smart grid and intelligent infrastructure;
10. Urban design/planning, regulations, legislation, certification, economics, and policy;
11. Social aspects, impacts and resiliency of cities;
12. Behavior monitoring, analysis and change within urban communities;
13. Health monitoring and improvement;
14. Nexus issues related to sustainable cities and societies;
15. Smart city governance;
16. Decision Support Systems for trade-off and uncertainty analysis for improved management of cities and society;
17. Big data, machine learning, and artificial intelligence applications and case studies;
18. Critical infrastructure protection, including security, privacy, forensics, and reliability issues of cyber-physical systems.
19. Water footprint reduction and urban water distribution, harvesting, treatment, reuse and management;
20. Waste reduction and recycling;
21. Wastewater collection, treatment and recycling;
22. Smart, clean and healthy transportation systems and infrastructure;