改善植物过敏原的基因编辑 - 综述

IF 2.2 Q3 GENETICS & HEREDITY
Anindita Chakraborty , Stephen J. Wylie
{"title":"改善植物过敏原的基因编辑 - 综述","authors":"Anindita Chakraborty ,&nbsp;Stephen J. Wylie","doi":"10.1016/j.plgene.2024.100476","DOIUrl":null,"url":null,"abstract":"<div><div>The aim of this review is to summarize current advancements in the application of CRISPR to ameliorate allergenicity in plant-based foods. The literature on food allergens highlights the negative impacts on quality of life for many sufferers. Efforts to select low-allergenicity crop varieties through conventional means have had limited success. Here we review the literature describing gene editing to eliminate allergenicity genes and measure subsequent allergen expression. Gene editing is a means of inserting or deleting nucleotides at precise locations/genes in the genome, and the most widely used technology is CRISPR (clustered regularly interspaced short palindromic repeats) along with an endonuclease such as Cas9 (CRISPR/Cas9). An example are the α-amylase/trypsin inhibitors (ATIs) in wheat that are responsible for bakers' asthma. CRISPR was utilized to simultaneously knock down two ATI subunits, resulting in reduced expression of both subunits. Between 1.4 % and 4.5 % of children suffer from peanut allergy. Progress toward knock down of expression of genes encoding known allergens in peanuts is reviewed. Other allergenic plant species of interest in this review are soy and mustard. Gene editing has the potential to manipulate expression of allergen genes to reduce allergenicity, but as some allergens play important roles in physiological processes such as biotic and abiotic stress amelioration, simply targeting their genes with CRISPR to abolish expression is not always feasible.</div></div>","PeriodicalId":38041,"journal":{"name":"Plant Gene","volume":"40 ","pages":"Article 100476"},"PeriodicalIF":2.2000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gene editing for allergen amelioration in plants – A review\",\"authors\":\"Anindita Chakraborty ,&nbsp;Stephen J. Wylie\",\"doi\":\"10.1016/j.plgene.2024.100476\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The aim of this review is to summarize current advancements in the application of CRISPR to ameliorate allergenicity in plant-based foods. The literature on food allergens highlights the negative impacts on quality of life for many sufferers. Efforts to select low-allergenicity crop varieties through conventional means have had limited success. Here we review the literature describing gene editing to eliminate allergenicity genes and measure subsequent allergen expression. Gene editing is a means of inserting or deleting nucleotides at precise locations/genes in the genome, and the most widely used technology is CRISPR (clustered regularly interspaced short palindromic repeats) along with an endonuclease such as Cas9 (CRISPR/Cas9). An example are the α-amylase/trypsin inhibitors (ATIs) in wheat that are responsible for bakers' asthma. CRISPR was utilized to simultaneously knock down two ATI subunits, resulting in reduced expression of both subunits. Between 1.4 % and 4.5 % of children suffer from peanut allergy. Progress toward knock down of expression of genes encoding known allergens in peanuts is reviewed. Other allergenic plant species of interest in this review are soy and mustard. Gene editing has the potential to manipulate expression of allergen genes to reduce allergenicity, but as some allergens play important roles in physiological processes such as biotic and abiotic stress amelioration, simply targeting their genes with CRISPR to abolish expression is not always feasible.</div></div>\",\"PeriodicalId\":38041,\"journal\":{\"name\":\"Plant Gene\",\"volume\":\"40 \",\"pages\":\"Article 100476\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Gene\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352407324000313\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Gene","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352407324000313","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

本综述旨在总结目前在应用 CRISPR 改善植物性食品过敏性方面取得的进展。有关食物过敏原的文献强调了过敏原对许多患者生活质量的负面影响。通过传统方法选择低过敏性作物品种的努力成效有限。在此,我们回顾了有关基因编辑的文献,以消除致敏基因并测量随后的过敏原表达。基因编辑是在基因组的精确位置/基因上插入或删除核苷酸的一种手段,最广泛使用的技术是 CRISPR(聚类有规则间隔短回文重复序列)和 Cas9(CRISPR/Cas9)等内切酶。例如,小麦中的α-淀粉酶/胰蛋白酶抑制剂(ATIs)是面包师哮喘的罪魁祸首。利用 CRISPR 同时敲除两个 ATI 亚基,导致两个亚基的表达量减少。1.4%到4.5%的儿童患有花生过敏症。本文综述了敲除花生中已知过敏原编码基因表达的进展。本综述关注的其他致敏植物物种是大豆和芥菜。基因编辑有可能操纵过敏原基因的表达以降低过敏性,但由于一些过敏原在生物和非生物应激改善等生理过程中发挥重要作用,因此简单地用 CRISPR 针对其基因来取消表达并不总是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gene editing for allergen amelioration in plants – A review
The aim of this review is to summarize current advancements in the application of CRISPR to ameliorate allergenicity in plant-based foods. The literature on food allergens highlights the negative impacts on quality of life for many sufferers. Efforts to select low-allergenicity crop varieties through conventional means have had limited success. Here we review the literature describing gene editing to eliminate allergenicity genes and measure subsequent allergen expression. Gene editing is a means of inserting or deleting nucleotides at precise locations/genes in the genome, and the most widely used technology is CRISPR (clustered regularly interspaced short palindromic repeats) along with an endonuclease such as Cas9 (CRISPR/Cas9). An example are the α-amylase/trypsin inhibitors (ATIs) in wheat that are responsible for bakers' asthma. CRISPR was utilized to simultaneously knock down two ATI subunits, resulting in reduced expression of both subunits. Between 1.4 % and 4.5 % of children suffer from peanut allergy. Progress toward knock down of expression of genes encoding known allergens in peanuts is reviewed. Other allergenic plant species of interest in this review are soy and mustard. Gene editing has the potential to manipulate expression of allergen genes to reduce allergenicity, but as some allergens play important roles in physiological processes such as biotic and abiotic stress amelioration, simply targeting their genes with CRISPR to abolish expression is not always feasible.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plant Gene
Plant Gene Agricultural and Biological Sciences-Plant Science
CiteScore
4.50
自引率
0.00%
发文量
42
审稿时长
51 days
期刊介绍: Plant Gene publishes papers that focus on the regulation, expression, function and evolution of genes in plants, algae and other photosynthesizing organisms (e.g., cyanobacteria), and plant-associated microorganisms. Plant Gene strives to be a diverse plant journal and topics in multiple fields will be considered for publication. Although not limited to the following, some general topics include: Gene discovery and characterization, Gene regulation in response to environmental stress (e.g., salinity, drought, etc.), Genetic effects of transposable elements, Genetic control of secondary metabolic pathways and metabolic enzymes. Herbal Medicine - regulation and medicinal properties of plant products, Plant hormonal signaling, Plant evolutionary genetics, molecular evolution, population genetics, and phylogenetics, Profiling of plant gene expression and genetic variation, Plant-microbe interactions (e.g., influence of endophytes on gene expression; horizontal gene transfer studies; etc.), Agricultural genetics - biotechnology and crop improvement.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信