{"title":"侧壁破裂对小型锂离子电池模块热失控传播倾向的影响","authors":"Elliott Read , Simon Jones , James Marco","doi":"10.1016/j.powera.2024.100162","DOIUrl":null,"url":null,"abstract":"<div><div>Six thermal runaway propagation tests were performed on small modules consisting of seven 21700 lithium-ion cells in a hexagonal configuration with 3 mm spacing between adjacent cells. One cell in the centre of the module was triggered into thermal runaway using an 8 mm diameter nail penetrated through the positive terminal of the cell. For half of the tests, sidewall rupture was initiated in the trigger cell using a 35 mm penetration depth. For the other half of the tests, sidewall rupture was not initiated in the trigger cell using a 10 mm penetration depth. In all tests where the trigger cell experienced sidewall rupture, there was thermal runaway propagation to the remaining six cells in the module; in all tests where the trigger cell did not experience sidewall rupture, there was no thermal runaway propagation to any other cells in the module. These results are explained by the directionality and magnitude of heat transfer for sidewall rupture failures relative to nominal failure. These results highlight the increased propensity for thermal runaway propagation when a sidewall rupture failure occurs in a battery module and emphasise the importance of methods to mitigate this failure in battery systems.</div></div>","PeriodicalId":34318,"journal":{"name":"Journal of Power Sources Advances","volume":"30 ","pages":"Article 100162"},"PeriodicalIF":5.4000,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The effect of sidewall rupture on the propensity for thermal runaway propagation in a small lithium-ion battery module\",\"authors\":\"Elliott Read , Simon Jones , James Marco\",\"doi\":\"10.1016/j.powera.2024.100162\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Six thermal runaway propagation tests were performed on small modules consisting of seven 21700 lithium-ion cells in a hexagonal configuration with 3 mm spacing between adjacent cells. One cell in the centre of the module was triggered into thermal runaway using an 8 mm diameter nail penetrated through the positive terminal of the cell. For half of the tests, sidewall rupture was initiated in the trigger cell using a 35 mm penetration depth. For the other half of the tests, sidewall rupture was not initiated in the trigger cell using a 10 mm penetration depth. In all tests where the trigger cell experienced sidewall rupture, there was thermal runaway propagation to the remaining six cells in the module; in all tests where the trigger cell did not experience sidewall rupture, there was no thermal runaway propagation to any other cells in the module. These results are explained by the directionality and magnitude of heat transfer for sidewall rupture failures relative to nominal failure. These results highlight the increased propensity for thermal runaway propagation when a sidewall rupture failure occurs in a battery module and emphasise the importance of methods to mitigate this failure in battery systems.</div></div>\",\"PeriodicalId\":34318,\"journal\":{\"name\":\"Journal of Power Sources Advances\",\"volume\":\"30 \",\"pages\":\"Article 100162\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Power Sources Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666248524000283\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666248524000283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
The effect of sidewall rupture on the propensity for thermal runaway propagation in a small lithium-ion battery module
Six thermal runaway propagation tests were performed on small modules consisting of seven 21700 lithium-ion cells in a hexagonal configuration with 3 mm spacing between adjacent cells. One cell in the centre of the module was triggered into thermal runaway using an 8 mm diameter nail penetrated through the positive terminal of the cell. For half of the tests, sidewall rupture was initiated in the trigger cell using a 35 mm penetration depth. For the other half of the tests, sidewall rupture was not initiated in the trigger cell using a 10 mm penetration depth. In all tests where the trigger cell experienced sidewall rupture, there was thermal runaway propagation to the remaining six cells in the module; in all tests where the trigger cell did not experience sidewall rupture, there was no thermal runaway propagation to any other cells in the module. These results are explained by the directionality and magnitude of heat transfer for sidewall rupture failures relative to nominal failure. These results highlight the increased propensity for thermal runaway propagation when a sidewall rupture failure occurs in a battery module and emphasise the importance of methods to mitigate this failure in battery systems.