Po Li , Changxing Liu , Xiaoshan Tong , Xiang Li , Gaofeng Zheng
{"title":"基于纹波分离的改进型单相整流器直接纹波功率预测控制","authors":"Po Li , Changxing Liu , Xiaoshan Tong , Xiang Li , Gaofeng Zheng","doi":"10.1016/j.conengprac.2024.106173","DOIUrl":null,"url":null,"abstract":"<div><div>Voltage ripple is introduced to the DC link when a single-phase rectifier operates, which affects the energy balance of both the DC and AC sides. Accurate acquisition and fast, precise tracking of the decoupling capacitor voltage and decoupling inductor current reference values are challenges in the design of active power decoupling controllers. This article employs instantaneous ripple power control, shifting the focus from the accuracy of the decoupling capacitor voltage and decoupling inductor current reference values to the accuracy of the ripple power reference value. A ripple separation-based active power decoupling control strategy is proposed. By designing a time-varying observer, the amplitude feedback signal of the output voltage’s second-harmonic ripple is extracted in real time to generate the ripple power reference, enhancing its accuracy and reliability. The endpoint equivalent modulation method is adopted to track the instantaneous ripple power. Compared with traditional finite control set model predictive control, it achieves better tracking performance at the same control frequency, with a fixed switching frequency. Additionally, measures are proposed to address input current distortion caused by output voltage ripple entering the rectifier’s grid-side current control loop. This avoids the pollution of the input current by the output ripple voltage. Simulations and experimentations are performed to test the proposed control strategy.</div></div>","PeriodicalId":50615,"journal":{"name":"Control Engineering Practice","volume":"155 ","pages":"Article 106173"},"PeriodicalIF":5.4000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved direct ripple power predictive control of single-phase rectifier based on ripple separation\",\"authors\":\"Po Li , Changxing Liu , Xiaoshan Tong , Xiang Li , Gaofeng Zheng\",\"doi\":\"10.1016/j.conengprac.2024.106173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Voltage ripple is introduced to the DC link when a single-phase rectifier operates, which affects the energy balance of both the DC and AC sides. Accurate acquisition and fast, precise tracking of the decoupling capacitor voltage and decoupling inductor current reference values are challenges in the design of active power decoupling controllers. This article employs instantaneous ripple power control, shifting the focus from the accuracy of the decoupling capacitor voltage and decoupling inductor current reference values to the accuracy of the ripple power reference value. A ripple separation-based active power decoupling control strategy is proposed. By designing a time-varying observer, the amplitude feedback signal of the output voltage’s second-harmonic ripple is extracted in real time to generate the ripple power reference, enhancing its accuracy and reliability. The endpoint equivalent modulation method is adopted to track the instantaneous ripple power. Compared with traditional finite control set model predictive control, it achieves better tracking performance at the same control frequency, with a fixed switching frequency. Additionally, measures are proposed to address input current distortion caused by output voltage ripple entering the rectifier’s grid-side current control loop. This avoids the pollution of the input current by the output ripple voltage. Simulations and experimentations are performed to test the proposed control strategy.</div></div>\",\"PeriodicalId\":50615,\"journal\":{\"name\":\"Control Engineering Practice\",\"volume\":\"155 \",\"pages\":\"Article 106173\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Control Engineering Practice\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0967066124003320\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Control Engineering Practice","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0967066124003320","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Improved direct ripple power predictive control of single-phase rectifier based on ripple separation
Voltage ripple is introduced to the DC link when a single-phase rectifier operates, which affects the energy balance of both the DC and AC sides. Accurate acquisition and fast, precise tracking of the decoupling capacitor voltage and decoupling inductor current reference values are challenges in the design of active power decoupling controllers. This article employs instantaneous ripple power control, shifting the focus from the accuracy of the decoupling capacitor voltage and decoupling inductor current reference values to the accuracy of the ripple power reference value. A ripple separation-based active power decoupling control strategy is proposed. By designing a time-varying observer, the amplitude feedback signal of the output voltage’s second-harmonic ripple is extracted in real time to generate the ripple power reference, enhancing its accuracy and reliability. The endpoint equivalent modulation method is adopted to track the instantaneous ripple power. Compared with traditional finite control set model predictive control, it achieves better tracking performance at the same control frequency, with a fixed switching frequency. Additionally, measures are proposed to address input current distortion caused by output voltage ripple entering the rectifier’s grid-side current control loop. This avoids the pollution of the input current by the output ripple voltage. Simulations and experimentations are performed to test the proposed control strategy.
期刊介绍:
Control Engineering Practice strives to meet the needs of industrial practitioners and industrially related academics and researchers. It publishes papers which illustrate the direct application of control theory and its supporting tools in all possible areas of automation. As a result, the journal only contains papers which can be considered to have made significant contributions to the application of advanced control techniques. It is normally expected that practical results should be included, but where simulation only studies are available, it is necessary to demonstrate that the simulation model is representative of a genuine application. Strictly theoretical papers will find a more appropriate home in Control Engineering Practice''s sister publication, Automatica. It is also expected that papers are innovative with respect to the state of the art and are sufficiently detailed for a reader to be able to duplicate the main results of the paper (supplementary material, including datasets, tables, code and any relevant interactive material can be made available and downloaded from the website). The benefits of the presented methods must be made very clear and the new techniques must be compared and contrasted with results obtained using existing methods. Moreover, a thorough analysis of failures that may happen in the design process and implementation can also be part of the paper.
The scope of Control Engineering Practice matches the activities of IFAC.
Papers demonstrating the contribution of automation and control in improving the performance, quality, productivity, sustainability, resource and energy efficiency, and the manageability of systems and processes for the benefit of mankind and are relevant to industrial practitioners are most welcome.