偶数高斯对偶闵科夫斯基问题解的存在性

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Yibin Feng , Shengnan Hu , Lei Xu
{"title":"偶数高斯对偶闵科夫斯基问题解的存在性","authors":"Yibin Feng ,&nbsp;Shengnan Hu ,&nbsp;Lei Xu","doi":"10.1016/j.aam.2024.102808","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we consider the Gaussian dual Minkowski problem. The problem involves a new type of fully nonlinear partial differential equations on the unit sphere. Our main purpose is to show the existence of solutions to the even Gaussian dual Minkowski problem for <span><math><mi>q</mi><mo>&gt;</mo><mn>0</mn></math></span>. More precisely, we will show that there exists an origin-symmetric convex body <em>K</em> in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> such that its Gaussian dual curvature measure <span><math><msub><mrow><mover><mrow><mi>C</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><msub><mrow><mi>γ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><mi>q</mi></mrow></msub><mo>(</mo><mi>K</mi><mo>,</mo><mo>⋅</mo><mo>)</mo></math></span> has density <em>f</em> (up to a constant) on the unit sphere when <span><math><mi>q</mi><mo>&gt;</mo><mn>0</mn></math></span> and <em>f</em> has positive upper and lower bounds. Note that if <em>f</em> is smooth then <em>K</em> is also smooth. As the application of smooth solutions, we completely solve the even Gaussian dual Minkowski problem for <span><math><mi>q</mi><mo>&gt;</mo><mn>0</mn></math></span> based on an approximation argument.</div></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":"163 ","pages":"Article 102808"},"PeriodicalIF":1.0000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence of solutions to the even Gaussian dual Minkowski problem\",\"authors\":\"Yibin Feng ,&nbsp;Shengnan Hu ,&nbsp;Lei Xu\",\"doi\":\"10.1016/j.aam.2024.102808\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we consider the Gaussian dual Minkowski problem. The problem involves a new type of fully nonlinear partial differential equations on the unit sphere. Our main purpose is to show the existence of solutions to the even Gaussian dual Minkowski problem for <span><math><mi>q</mi><mo>&gt;</mo><mn>0</mn></math></span>. More precisely, we will show that there exists an origin-symmetric convex body <em>K</em> in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> such that its Gaussian dual curvature measure <span><math><msub><mrow><mover><mrow><mi>C</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><msub><mrow><mi>γ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><mi>q</mi></mrow></msub><mo>(</mo><mi>K</mi><mo>,</mo><mo>⋅</mo><mo>)</mo></math></span> has density <em>f</em> (up to a constant) on the unit sphere when <span><math><mi>q</mi><mo>&gt;</mo><mn>0</mn></math></span> and <em>f</em> has positive upper and lower bounds. Note that if <em>f</em> is smooth then <em>K</em> is also smooth. As the application of smooth solutions, we completely solve the even Gaussian dual Minkowski problem for <span><math><mi>q</mi><mo>&gt;</mo><mn>0</mn></math></span> based on an approximation argument.</div></div>\",\"PeriodicalId\":50877,\"journal\":{\"name\":\"Advances in Applied Mathematics\",\"volume\":\"163 \",\"pages\":\"Article 102808\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0196885824001404\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196885824001404","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们考虑了高斯对偶闵科夫斯基问题。该问题涉及单位球面上的一种新型全非线性偏微分方程。我们的主要目的是证明 q>0 时偶数高斯对偶闵科夫斯基问题解的存在性。更确切地说,我们将证明在 Rn 中存在一个原点对称凸体 K,当 q>0 时,其高斯对偶曲率度量 C˜γn,q(K⋅)在单位球面上具有密度 f(直到一个常数),且 f 具有正的上界和下界。请注意,如果 f 是光滑的,那么 K 也是光滑的。作为光滑解的应用,我们基于近似论证完全解决了 q>0 的偶数高斯对偶闵科夫斯基问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence of solutions to the even Gaussian dual Minkowski problem
In this paper, we consider the Gaussian dual Minkowski problem. The problem involves a new type of fully nonlinear partial differential equations on the unit sphere. Our main purpose is to show the existence of solutions to the even Gaussian dual Minkowski problem for q>0. More precisely, we will show that there exists an origin-symmetric convex body K in Rn such that its Gaussian dual curvature measure C˜γn,q(K,) has density f (up to a constant) on the unit sphere when q>0 and f has positive upper and lower bounds. Note that if f is smooth then K is also smooth. As the application of smooth solutions, we completely solve the even Gaussian dual Minkowski problem for q>0 based on an approximation argument.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Applied Mathematics
Advances in Applied Mathematics 数学-应用数学
CiteScore
2.00
自引率
9.10%
发文量
88
审稿时长
85 days
期刊介绍: Interdisciplinary in its coverage, Advances in Applied Mathematics is dedicated to the publication of original and survey articles on rigorous methods and results in applied mathematics. The journal features articles on discrete mathematics, discrete probability theory, theoretical statistics, mathematical biology and bioinformatics, applied commutative algebra and algebraic geometry, convexity theory, experimental mathematics, theoretical computer science, and other areas. Emphasizing papers that represent a substantial mathematical advance in their field, the journal is an excellent source of current information for mathematicians, computer scientists, applied mathematicians, physicists, statisticians, and biologists. Over the past ten years, Advances in Applied Mathematics has published research papers written by many of the foremost mathematicians of our time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信