Xin Wen , Xinyu Gao , Shichang Qiao , Fengzhen Wang , Na Li , Shuai Liu , Chao Yuan
{"title":"对 NS163 Co 基超合金和 AISI 410L 不锈钢真空电子束焊接中相变的新认识:基于现场观察和变体选择","authors":"Xin Wen , Xinyu Gao , Shichang Qiao , Fengzhen Wang , Na Li , Shuai Liu , Chao Yuan","doi":"10.1016/j.vacuum.2024.113862","DOIUrl":null,"url":null,"abstract":"<div><div>This study establishes a link between crystallographic variants and mechanical properties at both the edge and center regions of NS163 Co-based superalloy wires and AISI 410L stainless steel plates welded joints. The thermal cycle of vacuum electron beam welding was simulated using in situ laser confocal microscopy to clarify the martensitic transformation process. Results indicate that martensite preferentially nucleates at grain boundaries, maintaining the Kurdjumov-Sachs orientation relationship with the parent austenite. Most variant boundaries in these regions correspond to variants within the same crystal packet, with V1/V3&V5 emerging as dominant pairs. At the edge, the increased cooling rate and temperature gradient amplify the driving force for martensitic transformation, fostering the generation of diverse variants. Conversely, lower cooling rate at the center raises the martensitic transformation temperature and expands variant selection. The study notes significant dislocation slip during micropillar compression, with the edge of weld exhibiting finer martensite laths and dense dislocations, which enhances strength (∼1279 MPa) compared to the center (∼1040 MPa), aligning with the results obtained via nanoindentation. The observed \"size effect\" results in a twice strength as measured by micropillar compression compared to nanoindentation. Additionally, staggered Bain groups at the edge include a greater number of high angle grain boundaries, indirectly improving toughness. This research aligns with recent literature and aids in the development of compositional design and machining techniques for heterogeneous welds.</div></div>","PeriodicalId":23559,"journal":{"name":"Vacuum","volume":"232 ","pages":"Article 113862"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new understanding of phase transformation in vacuum electron beam welding of NS163 Co-based superalloy and AISI 410L stainless steel: Based on in situ observation and variant selection\",\"authors\":\"Xin Wen , Xinyu Gao , Shichang Qiao , Fengzhen Wang , Na Li , Shuai Liu , Chao Yuan\",\"doi\":\"10.1016/j.vacuum.2024.113862\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study establishes a link between crystallographic variants and mechanical properties at both the edge and center regions of NS163 Co-based superalloy wires and AISI 410L stainless steel plates welded joints. The thermal cycle of vacuum electron beam welding was simulated using in situ laser confocal microscopy to clarify the martensitic transformation process. Results indicate that martensite preferentially nucleates at grain boundaries, maintaining the Kurdjumov-Sachs orientation relationship with the parent austenite. Most variant boundaries in these regions correspond to variants within the same crystal packet, with V1/V3&V5 emerging as dominant pairs. At the edge, the increased cooling rate and temperature gradient amplify the driving force for martensitic transformation, fostering the generation of diverse variants. Conversely, lower cooling rate at the center raises the martensitic transformation temperature and expands variant selection. The study notes significant dislocation slip during micropillar compression, with the edge of weld exhibiting finer martensite laths and dense dislocations, which enhances strength (∼1279 MPa) compared to the center (∼1040 MPa), aligning with the results obtained via nanoindentation. The observed \\\"size effect\\\" results in a twice strength as measured by micropillar compression compared to nanoindentation. Additionally, staggered Bain groups at the edge include a greater number of high angle grain boundaries, indirectly improving toughness. This research aligns with recent literature and aids in the development of compositional design and machining techniques for heterogeneous welds.</div></div>\",\"PeriodicalId\":23559,\"journal\":{\"name\":\"Vacuum\",\"volume\":\"232 \",\"pages\":\"Article 113862\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vacuum\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0042207X24009084\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vacuum","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0042207X24009084","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
A new understanding of phase transformation in vacuum electron beam welding of NS163 Co-based superalloy and AISI 410L stainless steel: Based on in situ observation and variant selection
This study establishes a link between crystallographic variants and mechanical properties at both the edge and center regions of NS163 Co-based superalloy wires and AISI 410L stainless steel plates welded joints. The thermal cycle of vacuum electron beam welding was simulated using in situ laser confocal microscopy to clarify the martensitic transformation process. Results indicate that martensite preferentially nucleates at grain boundaries, maintaining the Kurdjumov-Sachs orientation relationship with the parent austenite. Most variant boundaries in these regions correspond to variants within the same crystal packet, with V1/V3&V5 emerging as dominant pairs. At the edge, the increased cooling rate and temperature gradient amplify the driving force for martensitic transformation, fostering the generation of diverse variants. Conversely, lower cooling rate at the center raises the martensitic transformation temperature and expands variant selection. The study notes significant dislocation slip during micropillar compression, with the edge of weld exhibiting finer martensite laths and dense dislocations, which enhances strength (∼1279 MPa) compared to the center (∼1040 MPa), aligning with the results obtained via nanoindentation. The observed "size effect" results in a twice strength as measured by micropillar compression compared to nanoindentation. Additionally, staggered Bain groups at the edge include a greater number of high angle grain boundaries, indirectly improving toughness. This research aligns with recent literature and aids in the development of compositional design and machining techniques for heterogeneous welds.
期刊介绍:
Vacuum is an international rapid publications journal with a focus on short communication. All papers are peer-reviewed, with the review process for short communication geared towards very fast turnaround times. The journal also published full research papers, thematic issues and selected papers from leading conferences.
A report in Vacuum should represent a major advance in an area that involves a controlled environment at pressures of one atmosphere or below.
The scope of the journal includes:
1. Vacuum; original developments in vacuum pumping and instrumentation, vacuum measurement, vacuum gas dynamics, gas-surface interactions, surface treatment for UHV applications and low outgassing, vacuum melting, sintering, and vacuum metrology. Technology and solutions for large-scale facilities (e.g., particle accelerators and fusion devices). New instrumentation ( e.g., detectors and electron microscopes).
2. Plasma science; advances in PVD, CVD, plasma-assisted CVD, ion sources, deposition processes and analysis.
3. Surface science; surface engineering, surface chemistry, surface analysis, crystal growth, ion-surface interactions and etching, nanometer-scale processing, surface modification.
4. Materials science; novel functional or structural materials. Metals, ceramics, and polymers. Experiments, simulations, and modelling for understanding structure-property relationships. Thin films and coatings. Nanostructures and ion implantation.