Peng Han , Linzhao Sun , Quang-Vi Ngo , Yuanyuan Li , Guanqiu Qi , Yiyao An , Zhiqin Zhu
{"title":"基于分片区块链系统中社区检测的跨分片交易优化","authors":"Peng Han , Linzhao Sun , Quang-Vi Ngo , Yuanyuan Li , Guanqiu Qi , Yiyao An , Zhiqin Zhu","doi":"10.1016/j.asoc.2024.112451","DOIUrl":null,"url":null,"abstract":"<div><div>Blockchain systems have always faced the challenge of performance bottlenecks, and sharding technology is considered a promising mainstream on-chain scalability solution to solve this problem. Due to the complexity and high cost of the cross-shard transaction processing mechanism in the sharding blockchain system, as well as the high proportion of cross-shard transactions, it becomes challenging for the sharding blockchain system to reach the ideal theoretical performance upper limit. Therefore, this paper aims to reduce the proportion of cross-shard transactions by dividing accounts with frequent transactions into the same shard, thereby improving system throughput. This paper builds a hypergraph based on historical transaction data to represent the diverse transaction relationships between accounts, and formulates the account division problem in the blockchain as a community discovery problem on the hypergraph structure. A time-aware community detection algorithm is proposed to partition accounts by considering the sustainability of transaction relationships between accounts. This also solves the problem of community detection algorithms tending to partition into larger shards. In addition, this paper builds a local Ethereum test network and implements the proposed algorithm on a real transaction dataset. Experimental results show that this algorithm can reduce the proportion of cross-shard transactions from about 95% to about 10%. Furthermore, it shows superior performance in terms of transaction throughput and latency compared with other community detection-based account partitioning algorithms.</div></div>","PeriodicalId":50737,"journal":{"name":"Applied Soft Computing","volume":"167 ","pages":"Article 112451"},"PeriodicalIF":7.2000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cross-shard transaction optimization based on community detection in sharding blockchain systems\",\"authors\":\"Peng Han , Linzhao Sun , Quang-Vi Ngo , Yuanyuan Li , Guanqiu Qi , Yiyao An , Zhiqin Zhu\",\"doi\":\"10.1016/j.asoc.2024.112451\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Blockchain systems have always faced the challenge of performance bottlenecks, and sharding technology is considered a promising mainstream on-chain scalability solution to solve this problem. Due to the complexity and high cost of the cross-shard transaction processing mechanism in the sharding blockchain system, as well as the high proportion of cross-shard transactions, it becomes challenging for the sharding blockchain system to reach the ideal theoretical performance upper limit. Therefore, this paper aims to reduce the proportion of cross-shard transactions by dividing accounts with frequent transactions into the same shard, thereby improving system throughput. This paper builds a hypergraph based on historical transaction data to represent the diverse transaction relationships between accounts, and formulates the account division problem in the blockchain as a community discovery problem on the hypergraph structure. A time-aware community detection algorithm is proposed to partition accounts by considering the sustainability of transaction relationships between accounts. This also solves the problem of community detection algorithms tending to partition into larger shards. In addition, this paper builds a local Ethereum test network and implements the proposed algorithm on a real transaction dataset. Experimental results show that this algorithm can reduce the proportion of cross-shard transactions from about 95% to about 10%. Furthermore, it shows superior performance in terms of transaction throughput and latency compared with other community detection-based account partitioning algorithms.</div></div>\",\"PeriodicalId\":50737,\"journal\":{\"name\":\"Applied Soft Computing\",\"volume\":\"167 \",\"pages\":\"Article 112451\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Soft Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1568494624012250\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Soft Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1568494624012250","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Cross-shard transaction optimization based on community detection in sharding blockchain systems
Blockchain systems have always faced the challenge of performance bottlenecks, and sharding technology is considered a promising mainstream on-chain scalability solution to solve this problem. Due to the complexity and high cost of the cross-shard transaction processing mechanism in the sharding blockchain system, as well as the high proportion of cross-shard transactions, it becomes challenging for the sharding blockchain system to reach the ideal theoretical performance upper limit. Therefore, this paper aims to reduce the proportion of cross-shard transactions by dividing accounts with frequent transactions into the same shard, thereby improving system throughput. This paper builds a hypergraph based on historical transaction data to represent the diverse transaction relationships between accounts, and formulates the account division problem in the blockchain as a community discovery problem on the hypergraph structure. A time-aware community detection algorithm is proposed to partition accounts by considering the sustainability of transaction relationships between accounts. This also solves the problem of community detection algorithms tending to partition into larger shards. In addition, this paper builds a local Ethereum test network and implements the proposed algorithm on a real transaction dataset. Experimental results show that this algorithm can reduce the proportion of cross-shard transactions from about 95% to about 10%. Furthermore, it shows superior performance in terms of transaction throughput and latency compared with other community detection-based account partitioning algorithms.
期刊介绍:
Applied Soft Computing is an international journal promoting an integrated view of soft computing to solve real life problems.The focus is to publish the highest quality research in application and convergence of the areas of Fuzzy Logic, Neural Networks, Evolutionary Computing, Rough Sets and other similar techniques to address real world complexities.
Applied Soft Computing is a rolling publication: articles are published as soon as the editor-in-chief has accepted them. Therefore, the web site will continuously be updated with new articles and the publication time will be short.