Wenzheng Nan , Shaojiu Yan , Jixian Wang , Shenglong Dai
{"title":"用于高能锂离子电池的自支撑镁锑合金阳极","authors":"Wenzheng Nan , Shaojiu Yan , Jixian Wang , Shenglong Dai","doi":"10.1016/j.jpcs.2024.112451","DOIUrl":null,"url":null,"abstract":"<div><div>Due to advantages such as low reaction potential, high gravimetric and volumetric capacity, and minimal structural changes during interaction with lithium, the research on Mg anodes in Li-ion batteries has garnered significant attention. However, the slow diffusion kinetics of Li in Mg limits its further advancement. In this study, we designed an ultrathin, flexible, and self-supporting Mg–Sn alloy anode featuring an interleaved two-phase distribution. The electrode was fabricated through a simple one-step magnetron sputtering method, which circumvents the need for complex procedures like slurry preparation and coating. Both theoretical calculations and experimental results indicate that the introduction of a second phase(Mg<sub>2</sub>Sn phase) significantly enhances the interaction between Mg and Li, thereby unlocking the lithium storage capabilities of Mg. The developed Mg–Sn alloy electrode demonstrates a charge specific capacity of 1618 mAh g<sup>−1</sup> at 50 mA g<sup>−2</sup> and maintains a capacity of 421 mAh g<sup>−1</sup> after 50 cycles.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":"198 ","pages":"Article 112451"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-supporting Mg–Sn alloy anode for high-energy Li-ion batteries\",\"authors\":\"Wenzheng Nan , Shaojiu Yan , Jixian Wang , Shenglong Dai\",\"doi\":\"10.1016/j.jpcs.2024.112451\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Due to advantages such as low reaction potential, high gravimetric and volumetric capacity, and minimal structural changes during interaction with lithium, the research on Mg anodes in Li-ion batteries has garnered significant attention. However, the slow diffusion kinetics of Li in Mg limits its further advancement. In this study, we designed an ultrathin, flexible, and self-supporting Mg–Sn alloy anode featuring an interleaved two-phase distribution. The electrode was fabricated through a simple one-step magnetron sputtering method, which circumvents the need for complex procedures like slurry preparation and coating. Both theoretical calculations and experimental results indicate that the introduction of a second phase(Mg<sub>2</sub>Sn phase) significantly enhances the interaction between Mg and Li, thereby unlocking the lithium storage capabilities of Mg. The developed Mg–Sn alloy electrode demonstrates a charge specific capacity of 1618 mAh g<sup>−1</sup> at 50 mA g<sup>−2</sup> and maintains a capacity of 421 mAh g<sup>−1</sup> after 50 cycles.</div></div>\",\"PeriodicalId\":16811,\"journal\":{\"name\":\"Journal of Physics and Chemistry of Solids\",\"volume\":\"198 \",\"pages\":\"Article 112451\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics and Chemistry of Solids\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022369724005869\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics and Chemistry of Solids","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022369724005869","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
由于镁具有反应电位低、重力容量和体积容量高、与锂相互作用时结构变化小等优点,锂离子电池中的镁阳极研究已引起了广泛关注。然而,锂在镁中的缓慢扩散动力学限制了其进一步发展。在本研究中,我们设计了一种超薄、柔韧、自支撑的镁锰合金阳极,其特点是交错的两相分布。该电极采用简单的一步磁控溅射法制造,省去了浆料制备和涂层等复杂工序。理论计算和实验结果都表明,第二相(Mg2Sn 相)的引入大大增强了镁和锂之间的相互作用,从而释放了镁的锂存储能力。所开发的 Mg-Sn 合金电极在 50 mA g-2 时的充电比容量为 1618 mAh g-1,循环 50 次后容量仍保持在 421 mAh g-1。
Self-supporting Mg–Sn alloy anode for high-energy Li-ion batteries
Due to advantages such as low reaction potential, high gravimetric and volumetric capacity, and minimal structural changes during interaction with lithium, the research on Mg anodes in Li-ion batteries has garnered significant attention. However, the slow diffusion kinetics of Li in Mg limits its further advancement. In this study, we designed an ultrathin, flexible, and self-supporting Mg–Sn alloy anode featuring an interleaved two-phase distribution. The electrode was fabricated through a simple one-step magnetron sputtering method, which circumvents the need for complex procedures like slurry preparation and coating. Both theoretical calculations and experimental results indicate that the introduction of a second phase(Mg2Sn phase) significantly enhances the interaction between Mg and Li, thereby unlocking the lithium storage capabilities of Mg. The developed Mg–Sn alloy electrode demonstrates a charge specific capacity of 1618 mAh g−1 at 50 mA g−2 and maintains a capacity of 421 mAh g−1 after 50 cycles.
期刊介绍:
The Journal of Physics and Chemistry of Solids is a well-established international medium for publication of archival research in condensed matter and materials sciences. Areas of interest broadly include experimental and theoretical research on electronic, magnetic, spectroscopic and structural properties as well as the statistical mechanics and thermodynamics of materials. The focus is on gaining physical and chemical insight into the properties and potential applications of condensed matter systems.
Within the broad scope of the journal, beyond regular contributions, the editors have identified submissions in the following areas of physics and chemistry of solids to be of special current interest to the journal:
Low-dimensional systems
Exotic states of quantum electron matter including topological phases
Energy conversion and storage
Interfaces, nanoparticles and catalysts.