利用距离监控产品网络的边缘

IF 1.1 3区 计算机科学 Q1 BUSINESS, FINANCE
Wen Li , Ralf Klasing , Yaping Mao , Bo Ning
{"title":"利用距离监控产品网络的边缘","authors":"Wen Li ,&nbsp;Ralf Klasing ,&nbsp;Yaping Mao ,&nbsp;Bo Ning","doi":"10.1016/j.jcss.2024.103602","DOIUrl":null,"url":null,"abstract":"<div><div>Foucaud et al. recently introduced and initiated the study of a new graph-theoretic concept in the area of network monitoring. Let <em>G</em> be a graph with vertex set <span><math><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> and edge set <span><math><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>. For any subset <em>M</em> in <span><math><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> and an edge <em>e</em> in <span><math><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, let <span><math><mi>P</mi><mo>(</mo><mi>M</mi><mo>,</mo><mi>e</mi><mo>)</mo></math></span> be the set of pairs <span><math><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></math></span> such that <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo><mo>≠</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>G</mi><mo>−</mo><mi>e</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></math></span> where <span><math><mi>x</mi><mo>∈</mo><mi>M</mi></math></span> and <span><math><mi>y</mi><mo>∈</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>. <em>M</em> is called a <em>distance-edge-monitoring set</em> if every edge <em>e</em> of <em>G</em> is monitored by some vertex of <em>M</em>, that is, the set <span><math><mi>P</mi><mo>(</mo><mi>M</mi><mo>,</mo><mi>e</mi><mo>)</mo></math></span> is nonempty. The <em>distance-edge-monitoring number</em> of <em>G</em>, denoted by <span><math><mi>dem</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, is defined as the smallest size of distance-edge-monitoring sets of <em>G</em>. For two graphs <span><math><mi>G</mi><mo>,</mo><mi>H</mi></math></span> of order <span><math><mi>m</mi><mo>,</mo><mi>n</mi></math></span>, respectively, in this paper, we prove that <span><math><mi>max</mi><mo>⁡</mo><mo>{</mo><mi>m</mi><mi>dem</mi><mo>(</mo><mi>H</mi><mo>)</mo><mo>,</mo><mi>n</mi><mi>dem</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>}</mo><mo>≤</mo><mi>dem</mi><mo>(</mo><mi>G</mi><mspace></mspace><mo>□</mo><mspace></mspace><mi>H</mi><mo>)</mo><mo>≤</mo><mi>m</mi><mi>dem</mi><mo>(</mo><mi>H</mi><mo>)</mo><mo>+</mo><mi>n</mi><mi>dem</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>−</mo><mi>dem</mi><mo>(</mo><mi>G</mi><mo>)</mo><mi>dem</mi><mo>(</mo><mi>H</mi><mo>)</mo></math></span>, where □ is the Cartesian product operation. Moreover, we characterize the networks attaining the upper and lower bounds and show their applications on some known networks. We also obtain the distance-edge-monitoring numbers of join, corona, cluster, and some specific networks.</div></div>","PeriodicalId":50224,"journal":{"name":"Journal of Computer and System Sciences","volume":"148 ","pages":"Article 103602"},"PeriodicalIF":1.1000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Monitoring the edges of product networks using distances\",\"authors\":\"Wen Li ,&nbsp;Ralf Klasing ,&nbsp;Yaping Mao ,&nbsp;Bo Ning\",\"doi\":\"10.1016/j.jcss.2024.103602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Foucaud et al. recently introduced and initiated the study of a new graph-theoretic concept in the area of network monitoring. Let <em>G</em> be a graph with vertex set <span><math><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> and edge set <span><math><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>. For any subset <em>M</em> in <span><math><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> and an edge <em>e</em> in <span><math><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, let <span><math><mi>P</mi><mo>(</mo><mi>M</mi><mo>,</mo><mi>e</mi><mo>)</mo></math></span> be the set of pairs <span><math><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></math></span> such that <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo><mo>≠</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>G</mi><mo>−</mo><mi>e</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></math></span> where <span><math><mi>x</mi><mo>∈</mo><mi>M</mi></math></span> and <span><math><mi>y</mi><mo>∈</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>. <em>M</em> is called a <em>distance-edge-monitoring set</em> if every edge <em>e</em> of <em>G</em> is monitored by some vertex of <em>M</em>, that is, the set <span><math><mi>P</mi><mo>(</mo><mi>M</mi><mo>,</mo><mi>e</mi><mo>)</mo></math></span> is nonempty. The <em>distance-edge-monitoring number</em> of <em>G</em>, denoted by <span><math><mi>dem</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, is defined as the smallest size of distance-edge-monitoring sets of <em>G</em>. For two graphs <span><math><mi>G</mi><mo>,</mo><mi>H</mi></math></span> of order <span><math><mi>m</mi><mo>,</mo><mi>n</mi></math></span>, respectively, in this paper, we prove that <span><math><mi>max</mi><mo>⁡</mo><mo>{</mo><mi>m</mi><mi>dem</mi><mo>(</mo><mi>H</mi><mo>)</mo><mo>,</mo><mi>n</mi><mi>dem</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>}</mo><mo>≤</mo><mi>dem</mi><mo>(</mo><mi>G</mi><mspace></mspace><mo>□</mo><mspace></mspace><mi>H</mi><mo>)</mo><mo>≤</mo><mi>m</mi><mi>dem</mi><mo>(</mo><mi>H</mi><mo>)</mo><mo>+</mo><mi>n</mi><mi>dem</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>−</mo><mi>dem</mi><mo>(</mo><mi>G</mi><mo>)</mo><mi>dem</mi><mo>(</mo><mi>H</mi><mo>)</mo></math></span>, where □ is the Cartesian product operation. Moreover, we characterize the networks attaining the upper and lower bounds and show their applications on some known networks. We also obtain the distance-edge-monitoring numbers of join, corona, cluster, and some specific networks.</div></div>\",\"PeriodicalId\":50224,\"journal\":{\"name\":\"Journal of Computer and System Sciences\",\"volume\":\"148 \",\"pages\":\"Article 103602\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computer and System Sciences\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022000024000977\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer and System Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022000024000977","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

摘要

Foucaud 等人最近在网络监控领域提出并开始研究一个新的图论概念。假设 G 是一个具有顶点集 V(G) 和边集 E(G) 的图。对于 V(G) 中的任意子集 M 和 E(G) 中的边 e,设 P(M,e) 是一对 (x,y) 的集合,使得 dG(x,y)≠dG-e(x,y) 其中 x∈M 和 y∈V(G) 。如果 G 的每一条边 e 都受到 M 的某个顶点的监控,即集合 P(M,e) 非空,则 M 称为距离边监控集。对于阶数分别为 m,n 的两个图 G、H,本文证明了 max{mdem(H),ndem(G)}≤dem(G□H)≤mdem(H)+ndem(G)-dem(G)dem(H) ,其中 □ 是笛卡尔乘积运算。此外,我们还描述了达到上界和下界的网络的特征,并展示了它们在一些已知网络中的应用。我们还得到了 join、corona、cluster 和一些特定网络的距离边监控数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Monitoring the edges of product networks using distances
Foucaud et al. recently introduced and initiated the study of a new graph-theoretic concept in the area of network monitoring. Let G be a graph with vertex set V(G) and edge set E(G). For any subset M in V(G) and an edge e in E(G), let P(M,e) be the set of pairs (x,y) such that dG(x,y)dGe(x,y) where xM and yV(G). M is called a distance-edge-monitoring set if every edge e of G is monitored by some vertex of M, that is, the set P(M,e) is nonempty. The distance-edge-monitoring number of G, denoted by dem(G), is defined as the smallest size of distance-edge-monitoring sets of G. For two graphs G,H of order m,n, respectively, in this paper, we prove that max{mdem(H),ndem(G)}dem(GH)mdem(H)+ndem(G)dem(G)dem(H), where □ is the Cartesian product operation. Moreover, we characterize the networks attaining the upper and lower bounds and show their applications on some known networks. We also obtain the distance-edge-monitoring numbers of join, corona, cluster, and some specific networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computer and System Sciences
Journal of Computer and System Sciences 工程技术-计算机:理论方法
CiteScore
3.70
自引率
0.00%
发文量
58
审稿时长
68 days
期刊介绍: The Journal of Computer and System Sciences publishes original research papers in computer science and related subjects in system science, with attention to the relevant mathematical theory. Applications-oriented papers may also be accepted and they are expected to contain deep analytic evaluation of the proposed solutions. Research areas include traditional subjects such as: • Theory of algorithms and computability • Formal languages • Automata theory Contemporary subjects such as: • Complexity theory • Algorithmic Complexity • Parallel & distributed computing • Computer networks • Neural networks • Computational learning theory • Database theory & practice • Computer modeling of complex systems • Security and Privacy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信