Chetan Kumar Hirwani , Naveen Kumar Akkasali , Erukala Kalyan Kumar , Ravi Kumar , Amit Kumar Mehar , Subrata Kumar Panda
{"title":"湿热力学载荷下分层复合壳体面板的非线性瞬态分析与实验验证","authors":"Chetan Kumar Hirwani , Naveen Kumar Akkasali , Erukala Kalyan Kumar , Ravi Kumar , Amit Kumar Mehar , Subrata Kumar Panda","doi":"10.1016/j.compositesa.2024.108587","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, the nonlinear time-dependent deflection responses of delaminated composite shell panel structure under the influence of hygro-thermo-mechanical loading have been investigated numerically. To develop a mathematical model, two different higher-order displacement kinematics, Green-Lagrange’s nonlinear strain–displacement relations and two sub-laminate approaches are adopted for delaminated panel structure in association with finite element steps. The delaminated composite shell panel is under the three simultaneous loading, i.e., humidity, temperature, and mechanical loading. The nonlinear time-dependent responses are obtained by solving the governing equation using the direct iterative method and Newmark’s integration technique. The influence of delamination parameters (size, location, and position), geometry and loading on dynamic characteristics have been analyzed. The differences in responses indicated that the kinematic model with higher degrees of freedom generally shows higher deflection values. Further, a detailed discussion of the numerical illustrations and conclusive remarks based on the findings of the numerical illustrations have been provided.</div></div>","PeriodicalId":282,"journal":{"name":"Composites Part A: Applied Science and Manufacturing","volume":"189 ","pages":"Article 108587"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlinear transient analysis of delaminated composite shell panel under hygro-thermo-mechanical load and experimental validation\",\"authors\":\"Chetan Kumar Hirwani , Naveen Kumar Akkasali , Erukala Kalyan Kumar , Ravi Kumar , Amit Kumar Mehar , Subrata Kumar Panda\",\"doi\":\"10.1016/j.compositesa.2024.108587\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this work, the nonlinear time-dependent deflection responses of delaminated composite shell panel structure under the influence of hygro-thermo-mechanical loading have been investigated numerically. To develop a mathematical model, two different higher-order displacement kinematics, Green-Lagrange’s nonlinear strain–displacement relations and two sub-laminate approaches are adopted for delaminated panel structure in association with finite element steps. The delaminated composite shell panel is under the three simultaneous loading, i.e., humidity, temperature, and mechanical loading. The nonlinear time-dependent responses are obtained by solving the governing equation using the direct iterative method and Newmark’s integration technique. The influence of delamination parameters (size, location, and position), geometry and loading on dynamic characteristics have been analyzed. The differences in responses indicated that the kinematic model with higher degrees of freedom generally shows higher deflection values. Further, a detailed discussion of the numerical illustrations and conclusive remarks based on the findings of the numerical illustrations have been provided.</div></div>\",\"PeriodicalId\":282,\"journal\":{\"name\":\"Composites Part A: Applied Science and Manufacturing\",\"volume\":\"189 \",\"pages\":\"Article 108587\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composites Part A: Applied Science and Manufacturing\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359835X24005852\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part A: Applied Science and Manufacturing","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359835X24005852","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Nonlinear transient analysis of delaminated composite shell panel under hygro-thermo-mechanical load and experimental validation
In this work, the nonlinear time-dependent deflection responses of delaminated composite shell panel structure under the influence of hygro-thermo-mechanical loading have been investigated numerically. To develop a mathematical model, two different higher-order displacement kinematics, Green-Lagrange’s nonlinear strain–displacement relations and two sub-laminate approaches are adopted for delaminated panel structure in association with finite element steps. The delaminated composite shell panel is under the three simultaneous loading, i.e., humidity, temperature, and mechanical loading. The nonlinear time-dependent responses are obtained by solving the governing equation using the direct iterative method and Newmark’s integration technique. The influence of delamination parameters (size, location, and position), geometry and loading on dynamic characteristics have been analyzed. The differences in responses indicated that the kinematic model with higher degrees of freedom generally shows higher deflection values. Further, a detailed discussion of the numerical illustrations and conclusive remarks based on the findings of the numerical illustrations have been provided.
期刊介绍:
Composites Part A: Applied Science and Manufacturing is a comprehensive journal that publishes original research papers, review articles, case studies, short communications, and letters covering various aspects of composite materials science and technology. This includes fibrous and particulate reinforcements in polymeric, metallic, and ceramic matrices, as well as 'natural' composites like wood and biological materials. The journal addresses topics such as properties, design, and manufacture of reinforcing fibers and particles, novel architectures and concepts, multifunctional composites, advancements in fabrication and processing, manufacturing science, process modeling, experimental mechanics, microstructural characterization, interfaces, prediction and measurement of mechanical, physical, and chemical behavior, and performance in service. Additionally, articles on economic and commercial aspects, design, and case studies are welcomed. All submissions undergo rigorous peer review to ensure they contribute significantly and innovatively, maintaining high standards for content and presentation. The editorial team aims to expedite the review process for prompt publication.