格林算子的紧凑性及其在半线性非局部椭圆方程中的应用

IF 2.4 2区 数学 Q1 MATHEMATICS
Phuoc-Truong Huynh , Phuoc-Tai Nguyen
{"title":"格林算子的紧凑性及其在半线性非局部椭圆方程中的应用","authors":"Phuoc-Truong Huynh ,&nbsp;Phuoc-Tai Nguyen","doi":"10.1016/j.jde.2024.11.019","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we consider a class of integro-differential operators <span><math><mi>L</mi></math></span> posed on a <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> bounded domain <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span> with appropriate homogeneous Dirichlet conditions where each of which admits an inverse operator commonly known as the Green operator <span><math><msup><mrow><mi>G</mi></mrow><mrow><mi>Ω</mi></mrow></msup></math></span>. Under mild conditions on <span><math><mi>L</mi></math></span> and its Green operator, we establish various sharp compactness of <span><math><msup><mrow><mi>G</mi></mrow><mrow><mi>Ω</mi></mrow></msup></math></span> involving weighted Lebesgue spaces and weighted measure spaces. These results are then employed to prove the solvability for semilinear elliptic equation <span><math><mi>L</mi><mi>u</mi><mo>+</mo><mi>g</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>=</mo><mi>μ</mi></math></span> in Ω with boundary condition <span><math><mi>u</mi><mo>=</mo><mn>0</mn></math></span> on ∂Ω or exterior condition <span><math><mi>u</mi><mo>=</mo><mn>0</mn></math></span> in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>∖</mo><mi>Ω</mi></math></span> if applicable, where <em>μ</em> is a Radon measure on Ω and <span><math><mi>g</mi><mo>:</mo><mi>R</mi><mo>→</mo><mi>R</mi></math></span> is a nondecreasing continuous function satisfying a subcriticality integral condition. When <span><math><mi>g</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>=</mo><mo>|</mo><mi>t</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi><mo>−</mo><mn>1</mn></mrow></msup><mi>t</mi></math></span> with <span><math><mi>p</mi><mo>&gt;</mo><mn>1</mn></math></span>, we provide a sharp sufficient condition expressed in terms of suitable Bessel capacities for the existence of a solution. The contribution of the paper consists of (i) developing novel unified techniques which allow to treat various types of fractional operators and (ii) obtaining sharp compactness and existence results in weighted spaces, which refine and extend several related results in the literature.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"418 ","pages":"Pages 97-141"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Compactness of Green operators with applications to semilinear nonlocal elliptic equations\",\"authors\":\"Phuoc-Truong Huynh ,&nbsp;Phuoc-Tai Nguyen\",\"doi\":\"10.1016/j.jde.2024.11.019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we consider a class of integro-differential operators <span><math><mi>L</mi></math></span> posed on a <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> bounded domain <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span> with appropriate homogeneous Dirichlet conditions where each of which admits an inverse operator commonly known as the Green operator <span><math><msup><mrow><mi>G</mi></mrow><mrow><mi>Ω</mi></mrow></msup></math></span>. Under mild conditions on <span><math><mi>L</mi></math></span> and its Green operator, we establish various sharp compactness of <span><math><msup><mrow><mi>G</mi></mrow><mrow><mi>Ω</mi></mrow></msup></math></span> involving weighted Lebesgue spaces and weighted measure spaces. These results are then employed to prove the solvability for semilinear elliptic equation <span><math><mi>L</mi><mi>u</mi><mo>+</mo><mi>g</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>=</mo><mi>μ</mi></math></span> in Ω with boundary condition <span><math><mi>u</mi><mo>=</mo><mn>0</mn></math></span> on ∂Ω or exterior condition <span><math><mi>u</mi><mo>=</mo><mn>0</mn></math></span> in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>∖</mo><mi>Ω</mi></math></span> if applicable, where <em>μ</em> is a Radon measure on Ω and <span><math><mi>g</mi><mo>:</mo><mi>R</mi><mo>→</mo><mi>R</mi></math></span> is a nondecreasing continuous function satisfying a subcriticality integral condition. When <span><math><mi>g</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>=</mo><mo>|</mo><mi>t</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi><mo>−</mo><mn>1</mn></mrow></msup><mi>t</mi></math></span> with <span><math><mi>p</mi><mo>&gt;</mo><mn>1</mn></math></span>, we provide a sharp sufficient condition expressed in terms of suitable Bessel capacities for the existence of a solution. The contribution of the paper consists of (i) developing novel unified techniques which allow to treat various types of fractional operators and (ii) obtaining sharp compactness and existence results in weighted spaces, which refine and extend several related results in the literature.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"418 \",\"pages\":\"Pages 97-141\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039624007356\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039624007356","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们考虑了一类在 C2 有界域 Ω⊂RN 上构成的、具有适当同质 Dirichlet 条件的整微分算子 L,其中每个算子都有一个逆算子,通常称为格林算子 GΩ。在 L 及其格林算子的温和条件下,我们建立了涉及加权 Lebesgue 空间和加权度量空间的 GΩ 的各种尖锐紧凑性。然后,我们利用这些结果来证明Ω 中的半线性椭圆方程 Lu+g(u)=μ 的可解性,该方程在∂Ω 上的边界条件 u=0 或在 RN∖Ω 中的外部条件 u=0 (如果适用),其中 μ 是Ω 上的 Radon 度量,g:R→R 是满足次临界积分条件的非递减连续函数。当 g(t)=|t|p-1t 且 p>1 时,我们提供了一个用合适的贝塞尔容量表示的尖锐充分条件,以求解的存在性。本文的贡献在于:(i) 开发了新颖的统一技术,可以处理各种类型的分数算子;(ii) 在加权空间中获得了尖锐的紧凑性和存在性结果,完善并扩展了文献中的几个相关结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Compactness of Green operators with applications to semilinear nonlocal elliptic equations
In this paper, we consider a class of integro-differential operators L posed on a C2 bounded domain ΩRN with appropriate homogeneous Dirichlet conditions where each of which admits an inverse operator commonly known as the Green operator GΩ. Under mild conditions on L and its Green operator, we establish various sharp compactness of GΩ involving weighted Lebesgue spaces and weighted measure spaces. These results are then employed to prove the solvability for semilinear elliptic equation Lu+g(u)=μ in Ω with boundary condition u=0 on ∂Ω or exterior condition u=0 in RNΩ if applicable, where μ is a Radon measure on Ω and g:RR is a nondecreasing continuous function satisfying a subcriticality integral condition. When g(t)=|t|p1t with p>1, we provide a sharp sufficient condition expressed in terms of suitable Bessel capacities for the existence of a solution. The contribution of the paper consists of (i) developing novel unified techniques which allow to treat various types of fractional operators and (ii) obtaining sharp compactness and existence results in weighted spaces, which refine and extend several related results in the literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信