Deming Zhang , Wenjian Wang , Chunli Song , Tingting Huang , Hongyu Chen , Zihao Liu , Yiwen Zhou , Heping Wang
{"title":"肺炎患儿和健康对照组非类型流感嗜血杆菌基因组比较研究","authors":"Deming Zhang , Wenjian Wang , Chunli Song , Tingting Huang , Hongyu Chen , Zihao Liu , Yiwen Zhou , Heping Wang","doi":"10.1016/j.isci.2024.111330","DOIUrl":null,"url":null,"abstract":"<div><div>Non-typeable <em>Haemophilus influenzae</em> (NTHi) is a common pathogen causing respiratory infections, including pneumonia in children, and can also be found in the upper respiratory tracts of asymptomatic individuals. This study examines genomic variations between NTHi strains from healthy children and those from children with acute or chronic community-acquired pneumonia (CAP). Using bacterial genome-wide association studies (bGWAS), we compared these strains to identify key differences. Our analysis revealed that approximately 32% of genes exhibit variations between commensal and pathogenic states. Notably, we identified changes in <em>peptidoglycan biosynthesis</em> pathways and significant virulence factors associated with pneumonia. Furthermore, we observed a significant difference in β-lactam resistance due to PBP3 mutations between the healthy and pneumonia groups, confirmed by the ampicillin susceptibility test and characterized by the mutation pattern D350N, S357N, S385T, L389F. These findings contribute valuable insights into the genomic basis of NTHi pathogenicity and may inform more targeted clinical diagnostics and treatments.</div></div>","PeriodicalId":342,"journal":{"name":"iScience","volume":"27 12","pages":"Article 111330"},"PeriodicalIF":4.6000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative genomic study of non-typeable Haemophilus influenzae in children with pneumonia and healthy controls\",\"authors\":\"Deming Zhang , Wenjian Wang , Chunli Song , Tingting Huang , Hongyu Chen , Zihao Liu , Yiwen Zhou , Heping Wang\",\"doi\":\"10.1016/j.isci.2024.111330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Non-typeable <em>Haemophilus influenzae</em> (NTHi) is a common pathogen causing respiratory infections, including pneumonia in children, and can also be found in the upper respiratory tracts of asymptomatic individuals. This study examines genomic variations between NTHi strains from healthy children and those from children with acute or chronic community-acquired pneumonia (CAP). Using bacterial genome-wide association studies (bGWAS), we compared these strains to identify key differences. Our analysis revealed that approximately 32% of genes exhibit variations between commensal and pathogenic states. Notably, we identified changes in <em>peptidoglycan biosynthesis</em> pathways and significant virulence factors associated with pneumonia. Furthermore, we observed a significant difference in β-lactam resistance due to PBP3 mutations between the healthy and pneumonia groups, confirmed by the ampicillin susceptibility test and characterized by the mutation pattern D350N, S357N, S385T, L389F. These findings contribute valuable insights into the genomic basis of NTHi pathogenicity and may inform more targeted clinical diagnostics and treatments.</div></div>\",\"PeriodicalId\":342,\"journal\":{\"name\":\"iScience\",\"volume\":\"27 12\",\"pages\":\"Article 111330\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"iScience\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589004224025550\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"iScience","FirstCategoryId":"103","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589004224025550","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Comparative genomic study of non-typeable Haemophilus influenzae in children with pneumonia and healthy controls
Non-typeable Haemophilus influenzae (NTHi) is a common pathogen causing respiratory infections, including pneumonia in children, and can also be found in the upper respiratory tracts of asymptomatic individuals. This study examines genomic variations between NTHi strains from healthy children and those from children with acute or chronic community-acquired pneumonia (CAP). Using bacterial genome-wide association studies (bGWAS), we compared these strains to identify key differences. Our analysis revealed that approximately 32% of genes exhibit variations between commensal and pathogenic states. Notably, we identified changes in peptidoglycan biosynthesis pathways and significant virulence factors associated with pneumonia. Furthermore, we observed a significant difference in β-lactam resistance due to PBP3 mutations between the healthy and pneumonia groups, confirmed by the ampicillin susceptibility test and characterized by the mutation pattern D350N, S357N, S385T, L389F. These findings contribute valuable insights into the genomic basis of NTHi pathogenicity and may inform more targeted clinical diagnostics and treatments.
期刊介绍:
Science has many big remaining questions. To address them, we will need to work collaboratively and across disciplines. The goal of iScience is to help fuel that type of interdisciplinary thinking. iScience is a new open-access journal from Cell Press that provides a platform for original research in the life, physical, and earth sciences. The primary criterion for publication in iScience is a significant contribution to a relevant field combined with robust results and underlying methodology. The advances appearing in iScience include both fundamental and applied investigations across this interdisciplinary range of topic areas. To support transparency in scientific investigation, we are happy to consider replication studies and papers that describe negative results.
We know you want your work to be published quickly and to be widely visible within your community and beyond. With the strong international reputation of Cell Press behind it, publication in iScience will help your work garner the attention and recognition it merits. Like all Cell Press journals, iScience prioritizes rapid publication. Our editorial team pays special attention to high-quality author service and to efficient, clear-cut decisions based on the information available within the manuscript. iScience taps into the expertise across Cell Press journals and selected partners to inform our editorial decisions and help publish your science in a timely and seamless way.