降低 4H-SiC 外延层中载流子寿命的多堆叠疵点电子能量模型

IF 1.7 4区 材料科学 Q3 CRYSTALLOGRAPHY
Pengxiang Hou , Pin Wang , Yifei Li , Weiliang Zhong , Yuebin Han , Jing Wang , Le Yu , Zheyang Li , Rui Jin
{"title":"降低 4H-SiC 外延层中载流子寿命的多堆叠疵点电子能量模型","authors":"Pengxiang Hou ,&nbsp;Pin Wang ,&nbsp;Yifei Li ,&nbsp;Weiliang Zhong ,&nbsp;Yuebin Han ,&nbsp;Jing Wang ,&nbsp;Le Yu ,&nbsp;Zheyang Li ,&nbsp;Rui Jin","doi":"10.1016/j.jcrysgro.2024.128005","DOIUrl":null,"url":null,"abstract":"<div><div>The effect of stacking faults (SFs) on carrier lifetime in 110 μm 4H-SiC epilayers has been studied using photoluminescence and microwave photoconductance decay. The carrier lifetimes are associated with different types of SFs. The SFs are distinguished as multi-SFs and mono-SFs in terms of their characteristic luminescence peaks. The average lifetime at multi-SFs is about 60 % of that at mono-SFs. Contrary to the quantum well models reported previously, multi-SFs decrease the minority carrier lifetime than mono-stacking faults even with shallower energy levels. A “step-structure” quantum well model is proposed to discuss the carrier dynamics for the enhanced recombination at the multi-stacking faults.</div></div>","PeriodicalId":353,"journal":{"name":"Journal of Crystal Growth","volume":"650 ","pages":"Article 128005"},"PeriodicalIF":1.7000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An electronic energy model for multi-stacking faults in reducing carrier lifetime in 4H-SiC epitaxial layers\",\"authors\":\"Pengxiang Hou ,&nbsp;Pin Wang ,&nbsp;Yifei Li ,&nbsp;Weiliang Zhong ,&nbsp;Yuebin Han ,&nbsp;Jing Wang ,&nbsp;Le Yu ,&nbsp;Zheyang Li ,&nbsp;Rui Jin\",\"doi\":\"10.1016/j.jcrysgro.2024.128005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The effect of stacking faults (SFs) on carrier lifetime in 110 μm 4H-SiC epilayers has been studied using photoluminescence and microwave photoconductance decay. The carrier lifetimes are associated with different types of SFs. The SFs are distinguished as multi-SFs and mono-SFs in terms of their characteristic luminescence peaks. The average lifetime at multi-SFs is about 60 % of that at mono-SFs. Contrary to the quantum well models reported previously, multi-SFs decrease the minority carrier lifetime than mono-stacking faults even with shallower energy levels. A “step-structure” quantum well model is proposed to discuss the carrier dynamics for the enhanced recombination at the multi-stacking faults.</div></div>\",\"PeriodicalId\":353,\"journal\":{\"name\":\"Journal of Crystal Growth\",\"volume\":\"650 \",\"pages\":\"Article 128005\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Crystal Growth\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022024824004433\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CRYSTALLOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Crystal Growth","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022024824004433","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CRYSTALLOGRAPHY","Score":null,"Total":0}
引用次数: 0

摘要

利用光致发光和微波光电导衰减研究了堆叠断层(SF)对 110 μm 4H-SiC 外延层中载流子寿命的影响。载流子寿命与不同类型的 SF 有关。根据发光峰的特征,可将 SFs 区分为多 SFs 和单 SFs。多SFs的平均寿命约为单SFs的60%。与之前报道的量子阱模型相反,即使能级较浅,多叠层阱也比单叠层阱减少了少数载流子寿命。本文提出了一种 "阶梯结构 "量子阱模型,用于讨论多堆叠断层处载流子动态重组增强的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An electronic energy model for multi-stacking faults in reducing carrier lifetime in 4H-SiC epitaxial layers
The effect of stacking faults (SFs) on carrier lifetime in 110 μm 4H-SiC epilayers has been studied using photoluminescence and microwave photoconductance decay. The carrier lifetimes are associated with different types of SFs. The SFs are distinguished as multi-SFs and mono-SFs in terms of their characteristic luminescence peaks. The average lifetime at multi-SFs is about 60 % of that at mono-SFs. Contrary to the quantum well models reported previously, multi-SFs decrease the minority carrier lifetime than mono-stacking faults even with shallower energy levels. A “step-structure” quantum well model is proposed to discuss the carrier dynamics for the enhanced recombination at the multi-stacking faults.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Crystal Growth
Journal of Crystal Growth 化学-晶体学
CiteScore
3.60
自引率
11.10%
发文量
373
审稿时长
65 days
期刊介绍: The journal offers a common reference and publication source for workers engaged in research on the experimental and theoretical aspects of crystal growth and its applications, e.g. in devices. Experimental and theoretical contributions are published in the following fields: theory of nucleation and growth, molecular kinetics and transport phenomena, crystallization in viscous media such as polymers and glasses; crystal growth of metals, minerals, semiconductors, superconductors, magnetics, inorganic, organic and biological substances in bulk or as thin films; molecular beam epitaxy, chemical vapor deposition, growth of III-V and II-VI and other semiconductors; characterization of single crystals by physical and chemical methods; apparatus, instrumentation and techniques for crystal growth, and purification methods; multilayer heterostructures and their characterisation with an emphasis on crystal growth and epitaxial aspects of electronic materials. A special feature of the journal is the periodic inclusion of proceedings of symposia and conferences on relevant aspects of crystal growth.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信