设计用于肌电图监测的超软、超拉伸和可 3D 打印的水凝胶电生物粘合界面

Junxiao Qiu , Hude Ma , Mutian Yao , Manting Song , Liping Zhang , Jingkun Xu , Ximei Liu , Baoyang Lu
{"title":"设计用于肌电图监测的超软、超拉伸和可 3D 打印的水凝胶电生物粘合界面","authors":"Junxiao Qiu ,&nbsp;Hude Ma ,&nbsp;Mutian Yao ,&nbsp;Manting Song ,&nbsp;Liping Zhang ,&nbsp;Jingkun Xu ,&nbsp;Ximei Liu ,&nbsp;Baoyang Lu","doi":"10.1016/j.supmat.2024.100079","DOIUrl":null,"url":null,"abstract":"<div><div>Electromyography (EMG) monitoring has been extensively employed for critical applications in medicine, sports science, and rehabilitation. However, the mechanical mismatch between conventional EMG electrodes and the skin can lead to electrode detachment upon significant skin deformation. To address this limitation, we develop a PEDOT:PSS-based hydrogel electrical bioadhesive interface (EBI) that incorporates molecular doping and robust adhesion strategies to achieve excellent mechanical compatibility with biological tissues. This hydrogel EBI is fabricated using direct writing of printable inks followed by in-situ thermal initiation, enabling the creation of customizable patterns with high shape fidelity. The resultant 3D-printed PEDOT:PSS-based hydrogel EBI exhibits supersoft properties (Young's modulus 5–8.5 kPa), ultra-stretchability (1175 % strain), robust adhesion (&gt;133 kPa), and outstanding electrochemical performance (CIC reduction by 0.45 % over 1,000,000 cycles). Additionally, we further develop a PEDOT:PSS-based hydrogel electrode specifically for stable EMG signal recording. This electrode outperforms superior signal-to-noise ratio (SNR) performance compared to commercial electrodes in EMG monitoring.</div></div>","PeriodicalId":101187,"journal":{"name":"Supramolecular Materials","volume":"3 ","pages":"Article 100079"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of a supersoft, ultra-stretchable, and 3D printable hydrogel electrical bioadhesive interface for electromyography monitoring\",\"authors\":\"Junxiao Qiu ,&nbsp;Hude Ma ,&nbsp;Mutian Yao ,&nbsp;Manting Song ,&nbsp;Liping Zhang ,&nbsp;Jingkun Xu ,&nbsp;Ximei Liu ,&nbsp;Baoyang Lu\",\"doi\":\"10.1016/j.supmat.2024.100079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Electromyography (EMG) monitoring has been extensively employed for critical applications in medicine, sports science, and rehabilitation. However, the mechanical mismatch between conventional EMG electrodes and the skin can lead to electrode detachment upon significant skin deformation. To address this limitation, we develop a PEDOT:PSS-based hydrogel electrical bioadhesive interface (EBI) that incorporates molecular doping and robust adhesion strategies to achieve excellent mechanical compatibility with biological tissues. This hydrogel EBI is fabricated using direct writing of printable inks followed by in-situ thermal initiation, enabling the creation of customizable patterns with high shape fidelity. The resultant 3D-printed PEDOT:PSS-based hydrogel EBI exhibits supersoft properties (Young's modulus 5–8.5 kPa), ultra-stretchability (1175 % strain), robust adhesion (&gt;133 kPa), and outstanding electrochemical performance (CIC reduction by 0.45 % over 1,000,000 cycles). Additionally, we further develop a PEDOT:PSS-based hydrogel electrode specifically for stable EMG signal recording. This electrode outperforms superior signal-to-noise ratio (SNR) performance compared to commercial electrodes in EMG monitoring.</div></div>\",\"PeriodicalId\":101187,\"journal\":{\"name\":\"Supramolecular Materials\",\"volume\":\"3 \",\"pages\":\"Article 100079\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Supramolecular Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667240524000175\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Supramolecular Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667240524000175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

肌电图(EMG)监测已被广泛应用于医学、运动科学和康复领域的关键应用。然而,传统肌电图电极与皮肤之间的机械不匹配会导致电极在皮肤发生明显变形时脱落。为了解决这一局限性,我们开发了一种基于 PEDOT:PSS 的水凝胶生物电粘附界面(EBI),它结合了分子掺杂和强大的粘附策略,可与生物组织实现出色的机械兼容性。这种水凝胶 EBI 是通过直接写入可打印墨水,然后进行原位热引发来制造的,从而能够创建具有高形状保真度的可定制图案。最终制成的基于 PEDOT:PSS 的三维打印水凝胶 EBI 具有超软特性(杨氏模量 5-8.5 kPa)、超强拉伸性(1175 % 应变)、强大的粘附性(133 kPa)和出色的电化学性能(100 万次循环后 CIC 降低 0.45 %)。此外,我们还进一步开发了一种基于 PEDOT:PSS 的水凝胶电极,专门用于记录稳定的肌电信号。在 EMG 监测中,该电极的信噪比 (SNR) 性能优于商用电极。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Design of a supersoft, ultra-stretchable, and 3D printable hydrogel electrical bioadhesive interface for electromyography monitoring

Design of a supersoft, ultra-stretchable, and 3D printable hydrogel electrical bioadhesive interface for electromyography monitoring
Electromyography (EMG) monitoring has been extensively employed for critical applications in medicine, sports science, and rehabilitation. However, the mechanical mismatch between conventional EMG electrodes and the skin can lead to electrode detachment upon significant skin deformation. To address this limitation, we develop a PEDOT:PSS-based hydrogel electrical bioadhesive interface (EBI) that incorporates molecular doping and robust adhesion strategies to achieve excellent mechanical compatibility with biological tissues. This hydrogel EBI is fabricated using direct writing of printable inks followed by in-situ thermal initiation, enabling the creation of customizable patterns with high shape fidelity. The resultant 3D-printed PEDOT:PSS-based hydrogel EBI exhibits supersoft properties (Young's modulus 5–8.5 kPa), ultra-stretchability (1175 % strain), robust adhesion (>133 kPa), and outstanding electrochemical performance (CIC reduction by 0.45 % over 1,000,000 cycles). Additionally, we further develop a PEDOT:PSS-based hydrogel electrode specifically for stable EMG signal recording. This electrode outperforms superior signal-to-noise ratio (SNR) performance compared to commercial electrodes in EMG monitoring.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信