D.H. Sandeep , B.R. Radha Krushna , S.C. Sharma , Srikant Sahoo , C. Sridhar , Ambrose Rajkumar , K. Manjunatha , Sheng Yun Wu , V.R. Hemanth Kumar , A. Arulmozhi , H. Nagabhushana
{"title":"声空化辅助合成用于紫外线屏蔽、智能 pH 值检测、信息加密和食品包装应用的 PCDs@PVA 复合薄膜","authors":"D.H. Sandeep , B.R. Radha Krushna , S.C. Sharma , Srikant Sahoo , C. Sridhar , Ambrose Rajkumar , K. Manjunatha , Sheng Yun Wu , V.R. Hemanth Kumar , A. Arulmozhi , H. Nagabhushana","doi":"10.1016/j.jphotochem.2024.116162","DOIUrl":null,"url":null,"abstract":"<div><div>Excessive exposure to UV and high-energy blue light (HEBL) can severely damage the skin and eyes. Therefore, it is essential to protect our bodies from UV and HEBL radiation. We created PEG-derived carbon dots (PCDs) using the acoustic cavitation approach in order to completely block UV and HEBL. The influence of different experimental parameters such as sonication time, amplitude, and temperature on the PCDs is examined. The optimized PCDs are found to have an average diameter ranging from 5 to 9 nm, contingent upon the preparation circumstances, and to have a quantum yield (QY) of 14–16 %. The PCDs vivid colour and simultaneous UV and HEBL absorption properties allowed the PVA film containing 0.120 wt% of PCDs to demonstrate outstanding blocking efficiency, with 99.9 % blocking in HEBL and 100 % blocking in UV-C, UV-B, and UV-A. The photoluminescence (PL) behaviour of PCDs is greatly reduced by Fe<sup>3+</sup> ions because of strong excited state electron transfer. This fluorescent “turn-off” behaviour towards Fe<sup>3+</sup> is highly selective and sensitive with a limit of detection (LoD) of 0.366 μM. Paper-based sensors incorporating PCDs are developed for the rapid and accurate detection of Fe<sup>3+</sup> in surface water, wastewater treatment plant effluent, and tap water, leveraging their excellent sensitivity and selectivity towards Fe<sup>3+</sup>. The characteristics of ink-free patterned substrates are displayed by PCDs scattered across a PVA matrix, which makes them useful for the non-destructive acquisition and recognition of latent fingerprints (LFPs). A flexible, transparent film is produced when a LFP is exposed to a PCDs@PVA solution. In this film, a steady luminous fingerprint with specific ridge characteristics that aid in personal recognition is seen. This method shows promise for lifting and identifying long-exposed LFPs from various surfaces without causing damage. It is believed that the interfacial segregation of PCDs inside the PVA matrix during the film production process serves as a mechanism for LFP collection and visualization. The <em>YOLOv8x</em> program, which utilizes deep convolutional neural networks, is employed to analyze the discernible features present in fingerprints (FPs). Notably, their exceptional flexibility, foldability, and sustainability create new opportunities for use in the anti-counterfeiting (AC) field. Because of its remarkable fluorescence stability, it may be a viable substitute for conventional fluorescent inks. Fresh green apples are observed over time after being coated with 0.120 wt% PCDs@PVA and PVA. Virtual assessments indicated that the 0.120 wt% PCDs@PVA film coating significantly reduced weight and moisture loss, effectively inhibiting fungal growth and spoilage for over 25 days at room temperature (RT). Overall, the results clearly show that the PCDs@PVA film is easy to make, flexible, safe for the environment, and resistant to photodegradation. Hemolysis, and blood clotting exhibited favorable biocompatibility and nontoxicity.</div></div>","PeriodicalId":16782,"journal":{"name":"Journal of Photochemistry and Photobiology A-chemistry","volume":"461 ","pages":"Article 116162"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Acoustic cavitation assisted synthesis of PCDs@PVA composite film for UV shielding, intelligent pH detection, information encryption and food packing applications\",\"authors\":\"D.H. Sandeep , B.R. Radha Krushna , S.C. Sharma , Srikant Sahoo , C. Sridhar , Ambrose Rajkumar , K. Manjunatha , Sheng Yun Wu , V.R. Hemanth Kumar , A. Arulmozhi , H. Nagabhushana\",\"doi\":\"10.1016/j.jphotochem.2024.116162\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Excessive exposure to UV and high-energy blue light (HEBL) can severely damage the skin and eyes. Therefore, it is essential to protect our bodies from UV and HEBL radiation. We created PEG-derived carbon dots (PCDs) using the acoustic cavitation approach in order to completely block UV and HEBL. The influence of different experimental parameters such as sonication time, amplitude, and temperature on the PCDs is examined. The optimized PCDs are found to have an average diameter ranging from 5 to 9 nm, contingent upon the preparation circumstances, and to have a quantum yield (QY) of 14–16 %. The PCDs vivid colour and simultaneous UV and HEBL absorption properties allowed the PVA film containing 0.120 wt% of PCDs to demonstrate outstanding blocking efficiency, with 99.9 % blocking in HEBL and 100 % blocking in UV-C, UV-B, and UV-A. The photoluminescence (PL) behaviour of PCDs is greatly reduced by Fe<sup>3+</sup> ions because of strong excited state electron transfer. This fluorescent “turn-off” behaviour towards Fe<sup>3+</sup> is highly selective and sensitive with a limit of detection (LoD) of 0.366 μM. Paper-based sensors incorporating PCDs are developed for the rapid and accurate detection of Fe<sup>3+</sup> in surface water, wastewater treatment plant effluent, and tap water, leveraging their excellent sensitivity and selectivity towards Fe<sup>3+</sup>. The characteristics of ink-free patterned substrates are displayed by PCDs scattered across a PVA matrix, which makes them useful for the non-destructive acquisition and recognition of latent fingerprints (LFPs). A flexible, transparent film is produced when a LFP is exposed to a PCDs@PVA solution. In this film, a steady luminous fingerprint with specific ridge characteristics that aid in personal recognition is seen. This method shows promise for lifting and identifying long-exposed LFPs from various surfaces without causing damage. It is believed that the interfacial segregation of PCDs inside the PVA matrix during the film production process serves as a mechanism for LFP collection and visualization. The <em>YOLOv8x</em> program, which utilizes deep convolutional neural networks, is employed to analyze the discernible features present in fingerprints (FPs). Notably, their exceptional flexibility, foldability, and sustainability create new opportunities for use in the anti-counterfeiting (AC) field. Because of its remarkable fluorescence stability, it may be a viable substitute for conventional fluorescent inks. Fresh green apples are observed over time after being coated with 0.120 wt% PCDs@PVA and PVA. Virtual assessments indicated that the 0.120 wt% PCDs@PVA film coating significantly reduced weight and moisture loss, effectively inhibiting fungal growth and spoilage for over 25 days at room temperature (RT). Overall, the results clearly show that the PCDs@PVA film is easy to make, flexible, safe for the environment, and resistant to photodegradation. Hemolysis, and blood clotting exhibited favorable biocompatibility and nontoxicity.</div></div>\",\"PeriodicalId\":16782,\"journal\":{\"name\":\"Journal of Photochemistry and Photobiology A-chemistry\",\"volume\":\"461 \",\"pages\":\"Article 116162\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Photochemistry and Photobiology A-chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1010603024007068\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Photochemistry and Photobiology A-chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1010603024007068","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Acoustic cavitation assisted synthesis of PCDs@PVA composite film for UV shielding, intelligent pH detection, information encryption and food packing applications
Excessive exposure to UV and high-energy blue light (HEBL) can severely damage the skin and eyes. Therefore, it is essential to protect our bodies from UV and HEBL radiation. We created PEG-derived carbon dots (PCDs) using the acoustic cavitation approach in order to completely block UV and HEBL. The influence of different experimental parameters such as sonication time, amplitude, and temperature on the PCDs is examined. The optimized PCDs are found to have an average diameter ranging from 5 to 9 nm, contingent upon the preparation circumstances, and to have a quantum yield (QY) of 14–16 %. The PCDs vivid colour and simultaneous UV and HEBL absorption properties allowed the PVA film containing 0.120 wt% of PCDs to demonstrate outstanding blocking efficiency, with 99.9 % blocking in HEBL and 100 % blocking in UV-C, UV-B, and UV-A. The photoluminescence (PL) behaviour of PCDs is greatly reduced by Fe3+ ions because of strong excited state electron transfer. This fluorescent “turn-off” behaviour towards Fe3+ is highly selective and sensitive with a limit of detection (LoD) of 0.366 μM. Paper-based sensors incorporating PCDs are developed for the rapid and accurate detection of Fe3+ in surface water, wastewater treatment plant effluent, and tap water, leveraging their excellent sensitivity and selectivity towards Fe3+. The characteristics of ink-free patterned substrates are displayed by PCDs scattered across a PVA matrix, which makes them useful for the non-destructive acquisition and recognition of latent fingerprints (LFPs). A flexible, transparent film is produced when a LFP is exposed to a PCDs@PVA solution. In this film, a steady luminous fingerprint with specific ridge characteristics that aid in personal recognition is seen. This method shows promise for lifting and identifying long-exposed LFPs from various surfaces without causing damage. It is believed that the interfacial segregation of PCDs inside the PVA matrix during the film production process serves as a mechanism for LFP collection and visualization. The YOLOv8x program, which utilizes deep convolutional neural networks, is employed to analyze the discernible features present in fingerprints (FPs). Notably, their exceptional flexibility, foldability, and sustainability create new opportunities for use in the anti-counterfeiting (AC) field. Because of its remarkable fluorescence stability, it may be a viable substitute for conventional fluorescent inks. Fresh green apples are observed over time after being coated with 0.120 wt% PCDs@PVA and PVA. Virtual assessments indicated that the 0.120 wt% PCDs@PVA film coating significantly reduced weight and moisture loss, effectively inhibiting fungal growth and spoilage for over 25 days at room temperature (RT). Overall, the results clearly show that the PCDs@PVA film is easy to make, flexible, safe for the environment, and resistant to photodegradation. Hemolysis, and blood clotting exhibited favorable biocompatibility and nontoxicity.
期刊介绍:
JPPA publishes the results of fundamental studies on all aspects of chemical phenomena induced by interactions between light and molecules/matter of all kinds.
All systems capable of being described at the molecular or integrated multimolecular level are appropriate for the journal. This includes all molecular chemical species as well as biomolecular, supramolecular, polymer and other macromolecular systems, as well as solid state photochemistry. In addition, the journal publishes studies of semiconductor and other photoactive organic and inorganic materials, photocatalysis (organic, inorganic, supramolecular and superconductor).
The scope includes condensed and gas phase photochemistry, as well as synchrotron radiation chemistry. A broad range of processes and techniques in photochemistry are covered such as light induced energy, electron and proton transfer; nonlinear photochemical behavior; mechanistic investigation of photochemical reactions and identification of the products of photochemical reactions; quantum yield determinations and measurements of rate constants for primary and secondary photochemical processes; steady-state and time-resolved emission, ultrafast spectroscopic methods, single molecule spectroscopy, time resolved X-ray diffraction, luminescence microscopy, and scattering spectroscopy applied to photochemistry. Papers in emerging and applied areas such as luminescent sensors, electroluminescence, solar energy conversion, atmospheric photochemistry, environmental remediation, and related photocatalytic chemistry are also welcome.