Bin Li , Yubing Xia , Haonan Li , Mengya Chen , Zhongyuan Wu , Xiaohua Tan , Hui Xu
{"title":"具有优异耐腐蚀性的磁性 FeCoNiCuAl 高熵合金膜的研究","authors":"Bin Li , Yubing Xia , Haonan Li , Mengya Chen , Zhongyuan Wu , Xiaohua Tan , Hui Xu","doi":"10.1016/j.vacuum.2024.113859","DOIUrl":null,"url":null,"abstract":"<div><div>FeCoNiCuAl high-entropy alloy films (HEAFs) were prepared by direct current magnetron sputtering. The magnetic properties, corrosion resistance in 3.5 wt% NaCl solution and microstructure of the as-deposited and annealed HEAFs were investigated. The results indicated that the as-deposited HEAFs had an amorphous structure. With the increase of annealing temperature, the HEAFs gradually crystallized and the coercivity increased. The as-deposited HEAF had better corrosion resistance than the bulk FeCoNiCuAl high-entropy alloy (HEA), and the <em>I</em><sub><em>corr</em></sub> value was 1.41 × 10<sup>−6</sup>A/cm<sup>2</sup>. The improved corrosion performance is mainly due to the homogeneity of the composition. After annealing, (Cu, Ni)-rich precipitates appeared in the HEAFs, and the quantity and size of the precipitates increased with increasing annealing temperature. Annealing treatment significantly enhanced the corrosion resistance of the HEAFs. After annealing at 673 K, the optimal <em>I</em><sub><em>corr</em></sub> of HEAF was 2.74 × 10<sup>−7</sup> A/cm<sup>2</sup>, which was better than the 304 stainless steel, FeSiB amorphous alloy, some HEAFs, etc. The mechanism of corrosion resistance improvement of the HEAFs after annealing treatment was discussed using scanning electron microscopy and X-ray photoelectron spectroscopy. Good corrosion resistance results from high valence oxides and stable passivation films. This work not only provides direction for the enhancement of corrosion resistance of HEA magnetic films, but also provides candidate materials for magnetic film sensors in harsh environments.</div></div>","PeriodicalId":23559,"journal":{"name":"Vacuum","volume":"232 ","pages":"Article 113859"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The study on the magnetic FeCoNiCuAl high-entropy alloy film with excellent corrosion resistance\",\"authors\":\"Bin Li , Yubing Xia , Haonan Li , Mengya Chen , Zhongyuan Wu , Xiaohua Tan , Hui Xu\",\"doi\":\"10.1016/j.vacuum.2024.113859\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>FeCoNiCuAl high-entropy alloy films (HEAFs) were prepared by direct current magnetron sputtering. The magnetic properties, corrosion resistance in 3.5 wt% NaCl solution and microstructure of the as-deposited and annealed HEAFs were investigated. The results indicated that the as-deposited HEAFs had an amorphous structure. With the increase of annealing temperature, the HEAFs gradually crystallized and the coercivity increased. The as-deposited HEAF had better corrosion resistance than the bulk FeCoNiCuAl high-entropy alloy (HEA), and the <em>I</em><sub><em>corr</em></sub> value was 1.41 × 10<sup>−6</sup>A/cm<sup>2</sup>. The improved corrosion performance is mainly due to the homogeneity of the composition. After annealing, (Cu, Ni)-rich precipitates appeared in the HEAFs, and the quantity and size of the precipitates increased with increasing annealing temperature. Annealing treatment significantly enhanced the corrosion resistance of the HEAFs. After annealing at 673 K, the optimal <em>I</em><sub><em>corr</em></sub> of HEAF was 2.74 × 10<sup>−7</sup> A/cm<sup>2</sup>, which was better than the 304 stainless steel, FeSiB amorphous alloy, some HEAFs, etc. The mechanism of corrosion resistance improvement of the HEAFs after annealing treatment was discussed using scanning electron microscopy and X-ray photoelectron spectroscopy. Good corrosion resistance results from high valence oxides and stable passivation films. This work not only provides direction for the enhancement of corrosion resistance of HEA magnetic films, but also provides candidate materials for magnetic film sensors in harsh environments.</div></div>\",\"PeriodicalId\":23559,\"journal\":{\"name\":\"Vacuum\",\"volume\":\"232 \",\"pages\":\"Article 113859\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vacuum\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0042207X24009059\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vacuum","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0042207X24009059","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
The study on the magnetic FeCoNiCuAl high-entropy alloy film with excellent corrosion resistance
FeCoNiCuAl high-entropy alloy films (HEAFs) were prepared by direct current magnetron sputtering. The magnetic properties, corrosion resistance in 3.5 wt% NaCl solution and microstructure of the as-deposited and annealed HEAFs were investigated. The results indicated that the as-deposited HEAFs had an amorphous structure. With the increase of annealing temperature, the HEAFs gradually crystallized and the coercivity increased. The as-deposited HEAF had better corrosion resistance than the bulk FeCoNiCuAl high-entropy alloy (HEA), and the Icorr value was 1.41 × 10−6A/cm2. The improved corrosion performance is mainly due to the homogeneity of the composition. After annealing, (Cu, Ni)-rich precipitates appeared in the HEAFs, and the quantity and size of the precipitates increased with increasing annealing temperature. Annealing treatment significantly enhanced the corrosion resistance of the HEAFs. After annealing at 673 K, the optimal Icorr of HEAF was 2.74 × 10−7 A/cm2, which was better than the 304 stainless steel, FeSiB amorphous alloy, some HEAFs, etc. The mechanism of corrosion resistance improvement of the HEAFs after annealing treatment was discussed using scanning electron microscopy and X-ray photoelectron spectroscopy. Good corrosion resistance results from high valence oxides and stable passivation films. This work not only provides direction for the enhancement of corrosion resistance of HEA magnetic films, but also provides candidate materials for magnetic film sensors in harsh environments.
期刊介绍:
Vacuum is an international rapid publications journal with a focus on short communication. All papers are peer-reviewed, with the review process for short communication geared towards very fast turnaround times. The journal also published full research papers, thematic issues and selected papers from leading conferences.
A report in Vacuum should represent a major advance in an area that involves a controlled environment at pressures of one atmosphere or below.
The scope of the journal includes:
1. Vacuum; original developments in vacuum pumping and instrumentation, vacuum measurement, vacuum gas dynamics, gas-surface interactions, surface treatment for UHV applications and low outgassing, vacuum melting, sintering, and vacuum metrology. Technology and solutions for large-scale facilities (e.g., particle accelerators and fusion devices). New instrumentation ( e.g., detectors and electron microscopes).
2. Plasma science; advances in PVD, CVD, plasma-assisted CVD, ion sources, deposition processes and analysis.
3. Surface science; surface engineering, surface chemistry, surface analysis, crystal growth, ion-surface interactions and etching, nanometer-scale processing, surface modification.
4. Materials science; novel functional or structural materials. Metals, ceramics, and polymers. Experiments, simulations, and modelling for understanding structure-property relationships. Thin films and coatings. Nanostructures and ion implantation.