酸蚀埃洛石和 Co-Ni-B 复合材料在高性能超级电容器中的应用

IF 5.3 2区 地球科学 Q2 CHEMISTRY, PHYSICAL
Fan Yang, Xue-Jing Ma, Jun-Hu Liu, Bi Chen, Kang Yang, Xin-Yu Liu, Wei-Bin Zhang
{"title":"酸蚀埃洛石和 Co-Ni-B 复合材料在高性能超级电容器中的应用","authors":"Fan Yang,&nbsp;Xue-Jing Ma,&nbsp;Jun-Hu Liu,&nbsp;Bi Chen,&nbsp;Kang Yang,&nbsp;Xin-Yu Liu,&nbsp;Wei-Bin Zhang","doi":"10.1016/j.clay.2024.107637","DOIUrl":null,"url":null,"abstract":"<div><div>The rational design and optimization of electrode materials can effectively enhance the electrochemical performance of supercapacitors. In this work, by utilizing the microemulsion method to combine the nanoflake-structured Co-Ni-B material with the highly porous hollow tubular structure of acid-etched halloysite (eHal), the stable and porous Co-Ni-B@eHal composites have been successfully synthesized. Simultaneously, the bimetallic composition in Co-Ni-B can offer a wealth of redox reactions, while the eHal tubes provide support and facilitate the ionic transport channels. The optimal electrode exhibits a high specific capacitance of 1534 F g<sup>−1</sup> at a current density of 0.5 A g<sup>−1</sup> and maintains 99.67 % of its initial specific capacitance at a current density of 20 A g<sup>−1</sup>, demonstrating excellent rate performance. Furthermore, it shows remarkable cyclic stability, retaining a specific capacitance of approximately 100 % after 60,000 cycles at a current density of 5 A g<sup>−1</sup>. The assembled Co-Ni-B@eHal-based asymmetric supercapacitor operates at a working voltage of 1.5 V and achieves a maximum energy density of 105.73 W h kg<sup>−1</sup> at a power density of 375 W kg<sup>−1</sup>. These findings offer new insights into the development of bimetallic boride-based nanostructures and clay minerals in the field of electrochemical energy storage.</div></div>","PeriodicalId":245,"journal":{"name":"Applied Clay Science","volume":"263 ","pages":"Article 107637"},"PeriodicalIF":5.3000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Acid-etched halloysite and Co-Ni-B composites for high-performance supercapacitor application\",\"authors\":\"Fan Yang,&nbsp;Xue-Jing Ma,&nbsp;Jun-Hu Liu,&nbsp;Bi Chen,&nbsp;Kang Yang,&nbsp;Xin-Yu Liu,&nbsp;Wei-Bin Zhang\",\"doi\":\"10.1016/j.clay.2024.107637\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The rational design and optimization of electrode materials can effectively enhance the electrochemical performance of supercapacitors. In this work, by utilizing the microemulsion method to combine the nanoflake-structured Co-Ni-B material with the highly porous hollow tubular structure of acid-etched halloysite (eHal), the stable and porous Co-Ni-B@eHal composites have been successfully synthesized. Simultaneously, the bimetallic composition in Co-Ni-B can offer a wealth of redox reactions, while the eHal tubes provide support and facilitate the ionic transport channels. The optimal electrode exhibits a high specific capacitance of 1534 F g<sup>−1</sup> at a current density of 0.5 A g<sup>−1</sup> and maintains 99.67 % of its initial specific capacitance at a current density of 20 A g<sup>−1</sup>, demonstrating excellent rate performance. Furthermore, it shows remarkable cyclic stability, retaining a specific capacitance of approximately 100 % after 60,000 cycles at a current density of 5 A g<sup>−1</sup>. The assembled Co-Ni-B@eHal-based asymmetric supercapacitor operates at a working voltage of 1.5 V and achieves a maximum energy density of 105.73 W h kg<sup>−1</sup> at a power density of 375 W kg<sup>−1</sup>. These findings offer new insights into the development of bimetallic boride-based nanostructures and clay minerals in the field of electrochemical energy storage.</div></div>\",\"PeriodicalId\":245,\"journal\":{\"name\":\"Applied Clay Science\",\"volume\":\"263 \",\"pages\":\"Article 107637\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Clay Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169131724003855\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Clay Science","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169131724003855","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

合理设计和优化电极材料可有效提高超级电容器的电化学性能。本研究利用微乳液法将纳米片状结构的Co-Ni-B材料与酸蚀埃洛石(eHal)的高孔空心管状结构相结合,成功合成了稳定多孔的Co-Ni-B@eHal复合材料。同时,Co-Ni-B 中的双金属成分可提供丰富的氧化还原反应,而 eHal 管则可提供支持并促进离子传输通道。最佳电极在 0.5 A g-1 的电流密度下具有 1534 F g-1 的高比电容,在 20 A g-1 的电流密度下保持了 99.67 % 的初始比电容,表现出卓越的速率性能。此外,它还具有出色的循环稳定性,在 5 A g-1 的电流密度下循环 60,000 次后,比电容仍保持在约 100%。组装好的 Co-Ni-B@eHal 非对称超级电容器工作电压为 1.5 V,在功率密度为 375 W kg-1 的情况下,最大能量密度为 105.73 W h kg-1。这些发现为双金属硼基纳米结构和粘土矿物在电化学储能领域的发展提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Acid-etched halloysite and Co-Ni-B composites for high-performance supercapacitor application
The rational design and optimization of electrode materials can effectively enhance the electrochemical performance of supercapacitors. In this work, by utilizing the microemulsion method to combine the nanoflake-structured Co-Ni-B material with the highly porous hollow tubular structure of acid-etched halloysite (eHal), the stable and porous Co-Ni-B@eHal composites have been successfully synthesized. Simultaneously, the bimetallic composition in Co-Ni-B can offer a wealth of redox reactions, while the eHal tubes provide support and facilitate the ionic transport channels. The optimal electrode exhibits a high specific capacitance of 1534 F g−1 at a current density of 0.5 A g−1 and maintains 99.67 % of its initial specific capacitance at a current density of 20 A g−1, demonstrating excellent rate performance. Furthermore, it shows remarkable cyclic stability, retaining a specific capacitance of approximately 100 % after 60,000 cycles at a current density of 5 A g−1. The assembled Co-Ni-B@eHal-based asymmetric supercapacitor operates at a working voltage of 1.5 V and achieves a maximum energy density of 105.73 W h kg−1 at a power density of 375 W kg−1. These findings offer new insights into the development of bimetallic boride-based nanostructures and clay minerals in the field of electrochemical energy storage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Clay Science
Applied Clay Science 地学-矿物学
CiteScore
10.30
自引率
10.70%
发文量
289
审稿时长
39 days
期刊介绍: Applied Clay Science aims to be an international journal attracting high quality scientific papers on clays and clay minerals, including research papers, reviews, and technical notes. The journal covers typical subjects of Fundamental and Applied Clay Science such as: • Synthesis and purification • Structural, crystallographic and mineralogical properties of clays and clay minerals • Thermal properties of clays and clay minerals • Physico-chemical properties including i) surface and interface properties; ii) thermodynamic properties; iii) mechanical properties • Interaction with water, with polar and apolar molecules • Colloidal properties and rheology • Adsorption, Intercalation, Ionic exchange • Genesis and deposits of clay minerals • Geology and geochemistry of clays • Modification of clays and clay minerals properties by thermal and physical treatments • Modification by chemical treatments with organic and inorganic molecules(organoclays, pillared clays) • Modification by biological microorganisms. etc...
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信