{"title":"预测中国动力煤价格:带滚动窗口的多变量分解-积分预测模型有效吗?","authors":"Qihui Shao , Yongqiang Du , Wenxuan Xue , Zhiyuan Yang , Zhenxin Jia , Xianzhu Shao , Xue Xu , Hongbo Duan , Zhipeng Zhu","doi":"10.1016/j.resourpol.2024.105410","DOIUrl":null,"url":null,"abstract":"<div><div>Coal, as the primary energy source in China, significantly affects the country's energy security and national economic stability. However, the highly nonlinear and non-stationary nature of coal prices poses challenges for accurate forecasting. In this study, we propose the Rolling ICEEMDAN-Methods series model based on the \"divide and conquer\" approach to predict the Bohai-Rim Steam-Coal Price Index (BSPI), involving the integration of multiple methods, including ANN, CNN, LSTM, GRU, LightGBM, and ERT. Unlike conventional univariate forecasting, we comprehensively summarise the factors influencing coal prices into eight categories, totalling 27 variables, with the aim of capturing more meaningful information. By employing the window-rolling decomposition-ensemble forecasting method, we effectively avoided information leakage and boundary effects, leading to a significant improvement in prediction accuracy. Experimental results demonstrate that the proposed Rolling ICEEMDAN-Methods outperforms other Rolling Methods in terms of accuracy and stability. Novel variables, such as attention, and the other seven categories of influencing factors contribute to enhanced prediction accuracy, among which past coal prices exhibit higher importance in determining forecast results. The findings offer valuable guidance to coal enterprises in making production decisions and provide a basis for the government to formulate macroeconomic energy policies.</div></div>","PeriodicalId":20970,"journal":{"name":"Resources Policy","volume":"99 ","pages":"Article 105410"},"PeriodicalIF":10.2000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting China's thermal coal price: Does multivariate decomposition-integrated forecasting model with window rolling work?\",\"authors\":\"Qihui Shao , Yongqiang Du , Wenxuan Xue , Zhiyuan Yang , Zhenxin Jia , Xianzhu Shao , Xue Xu , Hongbo Duan , Zhipeng Zhu\",\"doi\":\"10.1016/j.resourpol.2024.105410\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Coal, as the primary energy source in China, significantly affects the country's energy security and national economic stability. However, the highly nonlinear and non-stationary nature of coal prices poses challenges for accurate forecasting. In this study, we propose the Rolling ICEEMDAN-Methods series model based on the \\\"divide and conquer\\\" approach to predict the Bohai-Rim Steam-Coal Price Index (BSPI), involving the integration of multiple methods, including ANN, CNN, LSTM, GRU, LightGBM, and ERT. Unlike conventional univariate forecasting, we comprehensively summarise the factors influencing coal prices into eight categories, totalling 27 variables, with the aim of capturing more meaningful information. By employing the window-rolling decomposition-ensemble forecasting method, we effectively avoided information leakage and boundary effects, leading to a significant improvement in prediction accuracy. Experimental results demonstrate that the proposed Rolling ICEEMDAN-Methods outperforms other Rolling Methods in terms of accuracy and stability. Novel variables, such as attention, and the other seven categories of influencing factors contribute to enhanced prediction accuracy, among which past coal prices exhibit higher importance in determining forecast results. The findings offer valuable guidance to coal enterprises in making production decisions and provide a basis for the government to formulate macroeconomic energy policies.</div></div>\",\"PeriodicalId\":20970,\"journal\":{\"name\":\"Resources Policy\",\"volume\":\"99 \",\"pages\":\"Article 105410\"},\"PeriodicalIF\":10.2000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Resources Policy\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0301420724007773\",\"RegionNum\":2,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"ENVIRONMENTAL STUDIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Resources Policy","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301420724007773","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENVIRONMENTAL STUDIES","Score":null,"Total":0}
Predicting China's thermal coal price: Does multivariate decomposition-integrated forecasting model with window rolling work?
Coal, as the primary energy source in China, significantly affects the country's energy security and national economic stability. However, the highly nonlinear and non-stationary nature of coal prices poses challenges for accurate forecasting. In this study, we propose the Rolling ICEEMDAN-Methods series model based on the "divide and conquer" approach to predict the Bohai-Rim Steam-Coal Price Index (BSPI), involving the integration of multiple methods, including ANN, CNN, LSTM, GRU, LightGBM, and ERT. Unlike conventional univariate forecasting, we comprehensively summarise the factors influencing coal prices into eight categories, totalling 27 variables, with the aim of capturing more meaningful information. By employing the window-rolling decomposition-ensemble forecasting method, we effectively avoided information leakage and boundary effects, leading to a significant improvement in prediction accuracy. Experimental results demonstrate that the proposed Rolling ICEEMDAN-Methods outperforms other Rolling Methods in terms of accuracy and stability. Novel variables, such as attention, and the other seven categories of influencing factors contribute to enhanced prediction accuracy, among which past coal prices exhibit higher importance in determining forecast results. The findings offer valuable guidance to coal enterprises in making production decisions and provide a basis for the government to formulate macroeconomic energy policies.
期刊介绍:
Resources Policy is an international journal focused on the economics and policy aspects of mineral and fossil fuel extraction, production, and utilization. It targets individuals in academia, government, and industry. The journal seeks original research submissions analyzing public policy, economics, social science, geography, and finance in the fields of mining, non-fuel minerals, energy minerals, fossil fuels, and metals. Mineral economics topics covered include mineral market analysis, price analysis, project evaluation, mining and sustainable development, mineral resource rents, resource curse, mineral wealth and corruption, mineral taxation and regulation, strategic minerals and their supply, and the impact of mineral development on local communities and indigenous populations. The journal specifically excludes papers with agriculture, forestry, or fisheries as their primary focus.