非局部索波列夫不等式的定量剖面分解和稳定性

IF 2.4 2区 数学 Q1 MATHEMATICS
Paolo Piccione , Minbo Yang , Shunneng Zhao
{"title":"非局部索波列夫不等式的定量剖面分解和稳定性","authors":"Paolo Piccione ,&nbsp;Minbo Yang ,&nbsp;Shunneng Zhao","doi":"10.1016/j.jde.2024.11.013","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we focus on studying the quantitative stability of the nonlocal Sobolev inequality given by<span><span><span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>H</mi><mi>L</mi></mrow></msub><msup><mrow><mo>(</mo><mspace></mspace><mspace></mspace><munder><mo>∫</mo><mrow><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></mrow></munder><mo>(</mo><mo>|</mo><mi>x</mi><msup><mrow><mo>|</mo></mrow><mrow><mo>−</mo><mi>μ</mi></mrow></msup><mo>⁎</mo><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><msubsup><mrow><mn>2</mn></mrow><mrow><mi>μ</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup></mrow></msup><mo>)</mo><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><msubsup><mrow><mn>2</mn></mrow><mrow><mi>μ</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup></mrow></msup><mi>d</mi><mi>x</mi><mo>)</mo></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><msubsup><mrow><mn>2</mn></mrow><mrow><mi>μ</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup></mrow></mfrac></mrow></msup><mo>≤</mo><munder><mo>∫</mo><mrow><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></mrow></munder><mo>|</mo><mi>∇</mi><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mi>d</mi><mi>x</mi><mo>,</mo><mspace></mspace><mo>∀</mo><mspace></mspace><mi>u</mi><mo>∈</mo><msup><mrow><mi>D</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>2</mn></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>)</mo><mo>,</mo></math></span></span></span> where ⁎ denotes the convolution of functions, <span><math><msubsup><mrow><mn>2</mn></mrow><mrow><mi>μ</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup><mo>:</mo><mo>=</mo><mfrac><mrow><mn>2</mn><mi>N</mi><mo>−</mo><mi>μ</mi></mrow><mrow><mi>N</mi><mo>−</mo><mn>2</mn></mrow></mfrac></math></span> and <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>H</mi><mi>L</mi></mrow></msub></math></span> are positive constants that depends solely on <em>N</em> and <em>μ</em>. For <span><math><mi>N</mi><mo>≥</mo><mn>3</mn></math></span> and <span><math><mn>0</mn><mo>&lt;</mo><mi>μ</mi><mo>&lt;</mo><mi>N</mi></math></span>, it is well-known that, up to translation and scaling, the nonlocal Sobolev inequality possesses a unique extremal function <span><math><mi>W</mi><mo>[</mo><mi>ξ</mi><mo>,</mo><mi>λ</mi><mo>]</mo></math></span> that is positive and radially symmetric.</div><div>Our research consists of three main parts. Firstly, we prove a result that provides quantitative stability of the nonlocal Sobolev inequality with the level of gradients. Secondly, we establish the stability of profile decomposition in relation to the Euler-Lagrange equation of the aforementioned inequality for nonnegative functions. Lastly, we investigate the quantitative stability of the nonlocal Sobolev inequality in the following form:<span><span><span><math><msub><mrow><mo>‖</mo><mi>∇</mi><mi>u</mi><mo>−</mo><munderover><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>κ</mi></mrow></munderover><mi>∇</mi><mi>W</mi><mo>[</mo><msub><mrow><mi>ξ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>]</mo><mo>‖</mo></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub><mo>≤</mo><mi>C</mi><msub><mrow><mo>‖</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><mrow><mo>(</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mo>|</mo><mi>x</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>μ</mi></mrow></msup></mrow></mfrac><mo>⁎</mo><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><msubsup><mrow><mn>2</mn></mrow><mrow><mi>μ</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup></mrow></msup><mo>)</mo></mrow><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><msubsup><mrow><mn>2</mn></mrow><mrow><mi>μ</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mo>‖</mo></mrow><mrow><msup><mrow><mo>(</mo><msup><mrow><mi>D</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>2</mn></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>)</mo><mo>)</mo></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></msub><mo>,</mo></math></span></span></span> where the parameter region satisfies <span><math><mi>κ</mi><mo>≥</mo><mn>2</mn></math></span>, <span><math><mn>3</mn><mo>≤</mo><mi>N</mi><mo>&lt;</mo><mn>6</mn><mo>−</mo><mi>μ</mi></math></span>, <span><math><mi>μ</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mi>N</mi><mo>)</mo></math></span> with <span><math><mn>0</mn><mo>&lt;</mo><mi>μ</mi><mo>≤</mo><mn>4</mn></math></span>, or in the case of dimension <span><math><mi>N</mi><mo>≥</mo><mn>3</mn></math></span> and <span><math><mi>κ</mi><mo>=</mo><mn>1</mn></math></span>, <span><math><mi>μ</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mi>N</mi><mo>)</mo></math></span> with <span><math><mn>0</mn><mo>&lt;</mo><mi>μ</mi><mo>≤</mo><mn>4</mn></math></span>.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"417 ","pages":"Pages 64-104"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantitative profile decomposition and stability for a nonlocal Sobolev inequality\",\"authors\":\"Paolo Piccione ,&nbsp;Minbo Yang ,&nbsp;Shunneng Zhao\",\"doi\":\"10.1016/j.jde.2024.11.013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we focus on studying the quantitative stability of the nonlocal Sobolev inequality given by<span><span><span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>H</mi><mi>L</mi></mrow></msub><msup><mrow><mo>(</mo><mspace></mspace><mspace></mspace><munder><mo>∫</mo><mrow><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></mrow></munder><mo>(</mo><mo>|</mo><mi>x</mi><msup><mrow><mo>|</mo></mrow><mrow><mo>−</mo><mi>μ</mi></mrow></msup><mo>⁎</mo><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><msubsup><mrow><mn>2</mn></mrow><mrow><mi>μ</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup></mrow></msup><mo>)</mo><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><msubsup><mrow><mn>2</mn></mrow><mrow><mi>μ</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup></mrow></msup><mi>d</mi><mi>x</mi><mo>)</mo></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><msubsup><mrow><mn>2</mn></mrow><mrow><mi>μ</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup></mrow></mfrac></mrow></msup><mo>≤</mo><munder><mo>∫</mo><mrow><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></mrow></munder><mo>|</mo><mi>∇</mi><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mi>d</mi><mi>x</mi><mo>,</mo><mspace></mspace><mo>∀</mo><mspace></mspace><mi>u</mi><mo>∈</mo><msup><mrow><mi>D</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>2</mn></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>)</mo><mo>,</mo></math></span></span></span> where ⁎ denotes the convolution of functions, <span><math><msubsup><mrow><mn>2</mn></mrow><mrow><mi>μ</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup><mo>:</mo><mo>=</mo><mfrac><mrow><mn>2</mn><mi>N</mi><mo>−</mo><mi>μ</mi></mrow><mrow><mi>N</mi><mo>−</mo><mn>2</mn></mrow></mfrac></math></span> and <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>H</mi><mi>L</mi></mrow></msub></math></span> are positive constants that depends solely on <em>N</em> and <em>μ</em>. For <span><math><mi>N</mi><mo>≥</mo><mn>3</mn></math></span> and <span><math><mn>0</mn><mo>&lt;</mo><mi>μ</mi><mo>&lt;</mo><mi>N</mi></math></span>, it is well-known that, up to translation and scaling, the nonlocal Sobolev inequality possesses a unique extremal function <span><math><mi>W</mi><mo>[</mo><mi>ξ</mi><mo>,</mo><mi>λ</mi><mo>]</mo></math></span> that is positive and radially symmetric.</div><div>Our research consists of three main parts. Firstly, we prove a result that provides quantitative stability of the nonlocal Sobolev inequality with the level of gradients. Secondly, we establish the stability of profile decomposition in relation to the Euler-Lagrange equation of the aforementioned inequality for nonnegative functions. Lastly, we investigate the quantitative stability of the nonlocal Sobolev inequality in the following form:<span><span><span><math><msub><mrow><mo>‖</mo><mi>∇</mi><mi>u</mi><mo>−</mo><munderover><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>κ</mi></mrow></munderover><mi>∇</mi><mi>W</mi><mo>[</mo><msub><mrow><mi>ξ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>]</mo><mo>‖</mo></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub><mo>≤</mo><mi>C</mi><msub><mrow><mo>‖</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><mrow><mo>(</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mo>|</mo><mi>x</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>μ</mi></mrow></msup></mrow></mfrac><mo>⁎</mo><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><msubsup><mrow><mn>2</mn></mrow><mrow><mi>μ</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup></mrow></msup><mo>)</mo></mrow><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><msubsup><mrow><mn>2</mn></mrow><mrow><mi>μ</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mo>‖</mo></mrow><mrow><msup><mrow><mo>(</mo><msup><mrow><mi>D</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>2</mn></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>)</mo><mo>)</mo></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></msub><mo>,</mo></math></span></span></span> where the parameter region satisfies <span><math><mi>κ</mi><mo>≥</mo><mn>2</mn></math></span>, <span><math><mn>3</mn><mo>≤</mo><mi>N</mi><mo>&lt;</mo><mn>6</mn><mo>−</mo><mi>μ</mi></math></span>, <span><math><mi>μ</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mi>N</mi><mo>)</mo></math></span> with <span><math><mn>0</mn><mo>&lt;</mo><mi>μ</mi><mo>≤</mo><mn>4</mn></math></span>, or in the case of dimension <span><math><mi>N</mi><mo>≥</mo><mn>3</mn></math></span> and <span><math><mi>κ</mi><mo>=</mo><mn>1</mn></math></span>, <span><math><mi>μ</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mi>N</mi><mo>)</mo></math></span> with <span><math><mn>0</mn><mo>&lt;</mo><mi>μ</mi><mo>≤</mo><mn>4</mn></math></span>.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"417 \",\"pages\":\"Pages 64-104\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039624007289\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039624007289","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们重点研究由 SHL(∫RN(|x|-μ⁎|u|2μ⁎)|u|2μ⁎dx)12μ⁎≤∫RN|∇u|2dx 给出的非局部 Sobolev 不等式的定量稳定性、∀u∈D1,2(RN),其中⁎表示函数卷积,2μ⁎:=2N-μN-2 和 SHL 是正常数,仅取决于 N 和 μ。众所周知,对于 N≥3 和 0<μ<N,非局部 Sobolev 不等式在不影响平移和缩放的情况下,有一个唯一的极值函数 W[ξ,λ],它是正的、径向对称的。首先,我们证明了一个结果,它提供了非局部 Sobolev 不等式与梯度水平的定量稳定性。其次,我们结合上述非负函数不等式的欧拉-拉格朗日方程,建立了剖面分解的稳定性。最后,我们研究了以下形式的非局部索波列夫不等式的定量稳定性:∇u-∑i=1κ∇W[ξi,λi]‖L2≤C‖Δu+(1|x|μ⁎|u|2μ⁎)|u|2μ⁎-2u‖(D1,2(RN))-1,其中参数区域满足κ≥2, 3≤N<;6-μ,μ∈(0,N)为 0<μ≤4,或者在维数 N≥3 且 κ=1 的情况下,μ∈(0,N)为 0<μ≤4。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantitative profile decomposition and stability for a nonlocal Sobolev inequality
In this paper, we focus on studying the quantitative stability of the nonlocal Sobolev inequality given bySHL(RN(|x|μ|u|2μ)|u|2μdx)12μRN|u|2dx,uD1,2(RN), where ⁎ denotes the convolution of functions, 2μ:=2NμN2 and SHL are positive constants that depends solely on N and μ. For N3 and 0<μ<N, it is well-known that, up to translation and scaling, the nonlocal Sobolev inequality possesses a unique extremal function W[ξ,λ] that is positive and radially symmetric.
Our research consists of three main parts. Firstly, we prove a result that provides quantitative stability of the nonlocal Sobolev inequality with the level of gradients. Secondly, we establish the stability of profile decomposition in relation to the Euler-Lagrange equation of the aforementioned inequality for nonnegative functions. Lastly, we investigate the quantitative stability of the nonlocal Sobolev inequality in the following form:ui=1κW[ξi,λi]L2CΔu+(1|x|μ|u|2μ)|u|2μ2u(D1,2(RN))1, where the parameter region satisfies κ2, 3N<6μ, μ(0,N) with 0<μ4, or in the case of dimension N3 and κ=1, μ(0,N) with 0<μ4.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信