{"title":"非局部索波列夫不等式的定量剖面分解和稳定性","authors":"Paolo Piccione , Minbo Yang , Shunneng Zhao","doi":"10.1016/j.jde.2024.11.013","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we focus on studying the quantitative stability of the nonlocal Sobolev inequality given by<span><span><span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>H</mi><mi>L</mi></mrow></msub><msup><mrow><mo>(</mo><mspace></mspace><mspace></mspace><munder><mo>∫</mo><mrow><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></mrow></munder><mo>(</mo><mo>|</mo><mi>x</mi><msup><mrow><mo>|</mo></mrow><mrow><mo>−</mo><mi>μ</mi></mrow></msup><mo>⁎</mo><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><msubsup><mrow><mn>2</mn></mrow><mrow><mi>μ</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup></mrow></msup><mo>)</mo><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><msubsup><mrow><mn>2</mn></mrow><mrow><mi>μ</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup></mrow></msup><mi>d</mi><mi>x</mi><mo>)</mo></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><msubsup><mrow><mn>2</mn></mrow><mrow><mi>μ</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup></mrow></mfrac></mrow></msup><mo>≤</mo><munder><mo>∫</mo><mrow><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></mrow></munder><mo>|</mo><mi>∇</mi><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mi>d</mi><mi>x</mi><mo>,</mo><mspace></mspace><mo>∀</mo><mspace></mspace><mi>u</mi><mo>∈</mo><msup><mrow><mi>D</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>2</mn></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>)</mo><mo>,</mo></math></span></span></span> where ⁎ denotes the convolution of functions, <span><math><msubsup><mrow><mn>2</mn></mrow><mrow><mi>μ</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup><mo>:</mo><mo>=</mo><mfrac><mrow><mn>2</mn><mi>N</mi><mo>−</mo><mi>μ</mi></mrow><mrow><mi>N</mi><mo>−</mo><mn>2</mn></mrow></mfrac></math></span> and <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>H</mi><mi>L</mi></mrow></msub></math></span> are positive constants that depends solely on <em>N</em> and <em>μ</em>. For <span><math><mi>N</mi><mo>≥</mo><mn>3</mn></math></span> and <span><math><mn>0</mn><mo><</mo><mi>μ</mi><mo><</mo><mi>N</mi></math></span>, it is well-known that, up to translation and scaling, the nonlocal Sobolev inequality possesses a unique extremal function <span><math><mi>W</mi><mo>[</mo><mi>ξ</mi><mo>,</mo><mi>λ</mi><mo>]</mo></math></span> that is positive and radially symmetric.</div><div>Our research consists of three main parts. Firstly, we prove a result that provides quantitative stability of the nonlocal Sobolev inequality with the level of gradients. Secondly, we establish the stability of profile decomposition in relation to the Euler-Lagrange equation of the aforementioned inequality for nonnegative functions. Lastly, we investigate the quantitative stability of the nonlocal Sobolev inequality in the following form:<span><span><span><math><msub><mrow><mo>‖</mo><mi>∇</mi><mi>u</mi><mo>−</mo><munderover><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>κ</mi></mrow></munderover><mi>∇</mi><mi>W</mi><mo>[</mo><msub><mrow><mi>ξ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>]</mo><mo>‖</mo></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub><mo>≤</mo><mi>C</mi><msub><mrow><mo>‖</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><mrow><mo>(</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mo>|</mo><mi>x</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>μ</mi></mrow></msup></mrow></mfrac><mo>⁎</mo><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><msubsup><mrow><mn>2</mn></mrow><mrow><mi>μ</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup></mrow></msup><mo>)</mo></mrow><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><msubsup><mrow><mn>2</mn></mrow><mrow><mi>μ</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mo>‖</mo></mrow><mrow><msup><mrow><mo>(</mo><msup><mrow><mi>D</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>2</mn></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>)</mo><mo>)</mo></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></msub><mo>,</mo></math></span></span></span> where the parameter region satisfies <span><math><mi>κ</mi><mo>≥</mo><mn>2</mn></math></span>, <span><math><mn>3</mn><mo>≤</mo><mi>N</mi><mo><</mo><mn>6</mn><mo>−</mo><mi>μ</mi></math></span>, <span><math><mi>μ</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mi>N</mi><mo>)</mo></math></span> with <span><math><mn>0</mn><mo><</mo><mi>μ</mi><mo>≤</mo><mn>4</mn></math></span>, or in the case of dimension <span><math><mi>N</mi><mo>≥</mo><mn>3</mn></math></span> and <span><math><mi>κ</mi><mo>=</mo><mn>1</mn></math></span>, <span><math><mi>μ</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mi>N</mi><mo>)</mo></math></span> with <span><math><mn>0</mn><mo><</mo><mi>μ</mi><mo>≤</mo><mn>4</mn></math></span>.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"417 ","pages":"Pages 64-104"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantitative profile decomposition and stability for a nonlocal Sobolev inequality\",\"authors\":\"Paolo Piccione , Minbo Yang , Shunneng Zhao\",\"doi\":\"10.1016/j.jde.2024.11.013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we focus on studying the quantitative stability of the nonlocal Sobolev inequality given by<span><span><span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>H</mi><mi>L</mi></mrow></msub><msup><mrow><mo>(</mo><mspace></mspace><mspace></mspace><munder><mo>∫</mo><mrow><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></mrow></munder><mo>(</mo><mo>|</mo><mi>x</mi><msup><mrow><mo>|</mo></mrow><mrow><mo>−</mo><mi>μ</mi></mrow></msup><mo>⁎</mo><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><msubsup><mrow><mn>2</mn></mrow><mrow><mi>μ</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup></mrow></msup><mo>)</mo><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><msubsup><mrow><mn>2</mn></mrow><mrow><mi>μ</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup></mrow></msup><mi>d</mi><mi>x</mi><mo>)</mo></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><msubsup><mrow><mn>2</mn></mrow><mrow><mi>μ</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup></mrow></mfrac></mrow></msup><mo>≤</mo><munder><mo>∫</mo><mrow><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></mrow></munder><mo>|</mo><mi>∇</mi><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mi>d</mi><mi>x</mi><mo>,</mo><mspace></mspace><mo>∀</mo><mspace></mspace><mi>u</mi><mo>∈</mo><msup><mrow><mi>D</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>2</mn></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>)</mo><mo>,</mo></math></span></span></span> where ⁎ denotes the convolution of functions, <span><math><msubsup><mrow><mn>2</mn></mrow><mrow><mi>μ</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup><mo>:</mo><mo>=</mo><mfrac><mrow><mn>2</mn><mi>N</mi><mo>−</mo><mi>μ</mi></mrow><mrow><mi>N</mi><mo>−</mo><mn>2</mn></mrow></mfrac></math></span> and <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>H</mi><mi>L</mi></mrow></msub></math></span> are positive constants that depends solely on <em>N</em> and <em>μ</em>. For <span><math><mi>N</mi><mo>≥</mo><mn>3</mn></math></span> and <span><math><mn>0</mn><mo><</mo><mi>μ</mi><mo><</mo><mi>N</mi></math></span>, it is well-known that, up to translation and scaling, the nonlocal Sobolev inequality possesses a unique extremal function <span><math><mi>W</mi><mo>[</mo><mi>ξ</mi><mo>,</mo><mi>λ</mi><mo>]</mo></math></span> that is positive and radially symmetric.</div><div>Our research consists of three main parts. Firstly, we prove a result that provides quantitative stability of the nonlocal Sobolev inequality with the level of gradients. Secondly, we establish the stability of profile decomposition in relation to the Euler-Lagrange equation of the aforementioned inequality for nonnegative functions. Lastly, we investigate the quantitative stability of the nonlocal Sobolev inequality in the following form:<span><span><span><math><msub><mrow><mo>‖</mo><mi>∇</mi><mi>u</mi><mo>−</mo><munderover><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>κ</mi></mrow></munderover><mi>∇</mi><mi>W</mi><mo>[</mo><msub><mrow><mi>ξ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>]</mo><mo>‖</mo></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub><mo>≤</mo><mi>C</mi><msub><mrow><mo>‖</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><mrow><mo>(</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mo>|</mo><mi>x</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>μ</mi></mrow></msup></mrow></mfrac><mo>⁎</mo><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><msubsup><mrow><mn>2</mn></mrow><mrow><mi>μ</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup></mrow></msup><mo>)</mo></mrow><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><msubsup><mrow><mn>2</mn></mrow><mrow><mi>μ</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mo>‖</mo></mrow><mrow><msup><mrow><mo>(</mo><msup><mrow><mi>D</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>2</mn></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>)</mo><mo>)</mo></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></msub><mo>,</mo></math></span></span></span> where the parameter region satisfies <span><math><mi>κ</mi><mo>≥</mo><mn>2</mn></math></span>, <span><math><mn>3</mn><mo>≤</mo><mi>N</mi><mo><</mo><mn>6</mn><mo>−</mo><mi>μ</mi></math></span>, <span><math><mi>μ</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mi>N</mi><mo>)</mo></math></span> with <span><math><mn>0</mn><mo><</mo><mi>μ</mi><mo>≤</mo><mn>4</mn></math></span>, or in the case of dimension <span><math><mi>N</mi><mo>≥</mo><mn>3</mn></math></span> and <span><math><mi>κ</mi><mo>=</mo><mn>1</mn></math></span>, <span><math><mi>μ</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mi>N</mi><mo>)</mo></math></span> with <span><math><mn>0</mn><mo><</mo><mi>μ</mi><mo>≤</mo><mn>4</mn></math></span>.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"417 \",\"pages\":\"Pages 64-104\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039624007289\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039624007289","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Quantitative profile decomposition and stability for a nonlocal Sobolev inequality
In this paper, we focus on studying the quantitative stability of the nonlocal Sobolev inequality given by where ⁎ denotes the convolution of functions, and are positive constants that depends solely on N and μ. For and , it is well-known that, up to translation and scaling, the nonlocal Sobolev inequality possesses a unique extremal function that is positive and radially symmetric.
Our research consists of three main parts. Firstly, we prove a result that provides quantitative stability of the nonlocal Sobolev inequality with the level of gradients. Secondly, we establish the stability of profile decomposition in relation to the Euler-Lagrange equation of the aforementioned inequality for nonnegative functions. Lastly, we investigate the quantitative stability of the nonlocal Sobolev inequality in the following form: where the parameter region satisfies , , with , or in the case of dimension and , with .
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics