多孔介质饱和混沌对流的分形和分化热非均衡模型对比分析

Q1 Social Sciences
Kashif Ali Abro , Imran Qasim Memon , Ali Yousef , Qasem M. Al-Mdallal
{"title":"多孔介质饱和混沌对流的分形和分化热非均衡模型对比分析","authors":"Kashif Ali Abro ,&nbsp;Imran Qasim Memon ,&nbsp;Ali Yousef ,&nbsp;Qasem M. Al-Mdallal","doi":"10.1016/j.sajce.2024.10.012","DOIUrl":null,"url":null,"abstract":"<div><div>The convective heat transfer is one of the most important mechanism of heat transference for controlling the chaotic characteristics in porous media. A comparative study of thermal non-equilibrium model is proposed for fractal porous under the consideration of chaotic convection. A novel chaos control is focused between fractal porous and fractional porous by means of newly proposed differential and integral techniques. The sensitivity analysis for chaos expansion and uncertainty quantification for the flow in heterogeneous media have been perceived to the problem of chaotic convection through numerical simulations. In order to approximate the propagation of chaos, two types of simulations have been carried out in terms of chaotic attractors through fractal and fractional approaches. For examining a variety of chaos under the numerical simulations in which fractal domain is varied and fractional domain is fixed, fractal domain is fixed and fractional domain is varied, and both fractal as well as fractional domain are varied. Finally, it is observed that the fractional and fractal memory effects have caused by interactions between uncertain parameters and disclosed the microstructures on the permeability of porous media.</div></div>","PeriodicalId":21926,"journal":{"name":"South African Journal of Chemical Engineering","volume":"51 ","pages":"Pages 124-135"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A comparative analysis of fractal and fractionalized thermal non-equilibrium model for chaotic convection saturated by porous medium\",\"authors\":\"Kashif Ali Abro ,&nbsp;Imran Qasim Memon ,&nbsp;Ali Yousef ,&nbsp;Qasem M. Al-Mdallal\",\"doi\":\"10.1016/j.sajce.2024.10.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The convective heat transfer is one of the most important mechanism of heat transference for controlling the chaotic characteristics in porous media. A comparative study of thermal non-equilibrium model is proposed for fractal porous under the consideration of chaotic convection. A novel chaos control is focused between fractal porous and fractional porous by means of newly proposed differential and integral techniques. The sensitivity analysis for chaos expansion and uncertainty quantification for the flow in heterogeneous media have been perceived to the problem of chaotic convection through numerical simulations. In order to approximate the propagation of chaos, two types of simulations have been carried out in terms of chaotic attractors through fractal and fractional approaches. For examining a variety of chaos under the numerical simulations in which fractal domain is varied and fractional domain is fixed, fractal domain is fixed and fractional domain is varied, and both fractal as well as fractional domain are varied. Finally, it is observed that the fractional and fractal memory effects have caused by interactions between uncertain parameters and disclosed the microstructures on the permeability of porous media.</div></div>\",\"PeriodicalId\":21926,\"journal\":{\"name\":\"South African Journal of Chemical Engineering\",\"volume\":\"51 \",\"pages\":\"Pages 124-135\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"South African Journal of Chemical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1026918524001264\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"South African Journal of Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1026918524001264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

摘要

对流传热是控制多孔介质混沌特性的最重要传热机制之一。在考虑混沌对流的前提下,提出了分形多孔热非均衡模型的对比研究。通过新提出的微分和积分技术,重点研究了分形多孔和分数多孔之间的新型混沌控制。通过数值模拟对混沌对流问题进行了混沌扩展的敏感性分析和异质介质中流动的不确定性量化。为了近似混沌的传播,通过分形和分数方法从混沌吸引子的角度进行了两类模拟。在分形域变化而分数域固定、分形域固定而分数域变化以及分形域和分数域均变化的数值模拟中,对各种混沌进行了研究。最后观察到,分形和分形记忆效应是由不确定参数之间的相互作用引起的,并揭示了微结构对多孔介质渗透性的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A comparative analysis of fractal and fractionalized thermal non-equilibrium model for chaotic convection saturated by porous medium
The convective heat transfer is one of the most important mechanism of heat transference for controlling the chaotic characteristics in porous media. A comparative study of thermal non-equilibrium model is proposed for fractal porous under the consideration of chaotic convection. A novel chaos control is focused between fractal porous and fractional porous by means of newly proposed differential and integral techniques. The sensitivity analysis for chaos expansion and uncertainty quantification for the flow in heterogeneous media have been perceived to the problem of chaotic convection through numerical simulations. In order to approximate the propagation of chaos, two types of simulations have been carried out in terms of chaotic attractors through fractal and fractional approaches. For examining a variety of chaos under the numerical simulations in which fractal domain is varied and fractional domain is fixed, fractal domain is fixed and fractional domain is varied, and both fractal as well as fractional domain are varied. Finally, it is observed that the fractional and fractal memory effects have caused by interactions between uncertain parameters and disclosed the microstructures on the permeability of porous media.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.40
自引率
0.00%
发文量
100
审稿时长
33 weeks
期刊介绍: The journal has a particular interest in publishing papers on the unique issues facing chemical engineering taking place in countries that are rich in resources but face specific technical and societal challenges, which require detailed knowledge of local conditions to address. Core topic areas are: Environmental process engineering • treatment and handling of waste and pollutants • the abatement of pollution, environmental process control • cleaner technologies • waste minimization • environmental chemical engineering • water treatment Reaction Engineering • modelling and simulation of reactors • transport phenomena within reacting systems • fluidization technology • reactor design Separation technologies • classic separations • novel separations Process and materials synthesis • novel synthesis of materials or processes, including but not limited to nanotechnology, ceramics, etc. Metallurgical process engineering and coal technology • novel developments related to the minerals beneficiation industry • coal technology Chemical engineering education • guides to good practice • novel approaches to learning • education beyond university.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信