Feliberto de la Cruz , Andy Schumann , Katrin Rieger , Daniel Güllmar , Jürgen R. Reichenbach , Karl-Jürgen Bär
{"title":"基于固定颗粒的分析揭示了年轻人和老年人的白质差异","authors":"Feliberto de la Cruz , Andy Schumann , Katrin Rieger , Daniel Güllmar , Jürgen R. Reichenbach , Karl-Jürgen Bär","doi":"10.1016/j.nbas.2024.100132","DOIUrl":null,"url":null,"abstract":"<div><div>The process of healthy aging involves complex alterations in neural structures, with white matter (WM) changes significantly impacting cognitive and motor functions. Conventional methods such as diffusion tensor imaging provide valuable insights, but their limitations in capturing complex WM geometry advocate for more advanced approaches. In this study involving 120 healthy volunteers, we investigated whole-brain WM differences between young and old individuals using a novel technique called fixel-based analysis (FBA). This approach revealed that older adults exhibited reduced FBA-derived metrics in several WM tracts, with frontal areas particularly affected. Surprisingly, age-related differences in FBA-derived measures showed no significant correlation with risk factors such as alcohol consumption, exercise frequency, or pulse pressure but predicted cognitive performance. These findings emphasize FBA’s potential in characterizing complex WM changes and the link between cognitive abilities and WM alterations in healthy aging. Overall, this study advances our understanding of age-related neurodegeneration, highlighting the importance of comprehensive assessments that integrate advanced neuroimaging techniques, cognitive evaluation, and demographic factors to gain insights into healthy aging.</div></div>","PeriodicalId":72131,"journal":{"name":"Aging brain","volume":"6 ","pages":"Article 100132"},"PeriodicalIF":1.7000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"White matter differences between younger and older adults revealed by fixel-based analysis\",\"authors\":\"Feliberto de la Cruz , Andy Schumann , Katrin Rieger , Daniel Güllmar , Jürgen R. Reichenbach , Karl-Jürgen Bär\",\"doi\":\"10.1016/j.nbas.2024.100132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The process of healthy aging involves complex alterations in neural structures, with white matter (WM) changes significantly impacting cognitive and motor functions. Conventional methods such as diffusion tensor imaging provide valuable insights, but their limitations in capturing complex WM geometry advocate for more advanced approaches. In this study involving 120 healthy volunteers, we investigated whole-brain WM differences between young and old individuals using a novel technique called fixel-based analysis (FBA). This approach revealed that older adults exhibited reduced FBA-derived metrics in several WM tracts, with frontal areas particularly affected. Surprisingly, age-related differences in FBA-derived measures showed no significant correlation with risk factors such as alcohol consumption, exercise frequency, or pulse pressure but predicted cognitive performance. These findings emphasize FBA’s potential in characterizing complex WM changes and the link between cognitive abilities and WM alterations in healthy aging. Overall, this study advances our understanding of age-related neurodegeneration, highlighting the importance of comprehensive assessments that integrate advanced neuroimaging techniques, cognitive evaluation, and demographic factors to gain insights into healthy aging.</div></div>\",\"PeriodicalId\":72131,\"journal\":{\"name\":\"Aging brain\",\"volume\":\"6 \",\"pages\":\"Article 100132\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aging brain\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589958924000288\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aging brain","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589958924000288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
White matter differences between younger and older adults revealed by fixel-based analysis
The process of healthy aging involves complex alterations in neural structures, with white matter (WM) changes significantly impacting cognitive and motor functions. Conventional methods such as diffusion tensor imaging provide valuable insights, but their limitations in capturing complex WM geometry advocate for more advanced approaches. In this study involving 120 healthy volunteers, we investigated whole-brain WM differences between young and old individuals using a novel technique called fixel-based analysis (FBA). This approach revealed that older adults exhibited reduced FBA-derived metrics in several WM tracts, with frontal areas particularly affected. Surprisingly, age-related differences in FBA-derived measures showed no significant correlation with risk factors such as alcohol consumption, exercise frequency, or pulse pressure but predicted cognitive performance. These findings emphasize FBA’s potential in characterizing complex WM changes and the link between cognitive abilities and WM alterations in healthy aging. Overall, this study advances our understanding of age-related neurodegeneration, highlighting the importance of comprehensive assessments that integrate advanced neuroimaging techniques, cognitive evaluation, and demographic factors to gain insights into healthy aging.