{"title":"硫磺共聚物作为一种通用粘合剂,可在交联橡胶中构建离析结构,从而改善导电性能和机械性能","authors":"Shu Wang, Zhenghai Tang, Yilin Xiao, Dong Wang, Baochun Guo, Liqun Zhang","doi":"10.1016/j.compscitech.2024.110964","DOIUrl":null,"url":null,"abstract":"<div><div>Creating segregated structure within composites can significantly improve electrical conductivity but usually compromises mechanical properties. In this contribution, we introduced a straightforward and universal method to fabricate segregated rubber composites with a rare integration of high electrical conductivity and mechanical robustness by utilizing an inverse vulcanized copolymer (SP) as an adhesive to bind the segregated domains. Specifically, sulfur-crosslinked butadiene styrene rubber (SBR) granules were mixed with SP and carbon nanotubes (CNTs), followed by compression molding. CNTs embedded within SP are strategically dispersed along the boundaries of SBR granules, and the reaction of SP with SBR granules creates covalent bonding among the segregated domains and increases their crosslinking density. The segregated skeleton constituted by highly interconnected CNTs is robust, which imparts the composites with high electrical conductivity that is stable upon deformations and is able to heal after damage. In addition, the rigid segregated skeleton preferentially ruptures to dissipate enormous energy, and the cohesive interphase facilitates chain finite extensibility in the highly crosslinked segregated domains, resulting in remarkable enhancements on the tensile strength and modulus of the composites. The universality of this strategy is further demonstrated by using ground waste tyre rubber as matrix and boron nitride sheets as filler.</div></div>","PeriodicalId":283,"journal":{"name":"Composites Science and Technology","volume":"260 ","pages":"Article 110964"},"PeriodicalIF":8.3000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sulfur Co-polymer as a universal adhesive to construct segregated structure in cross-linked rubber toward improved conductive and mechanical properties\",\"authors\":\"Shu Wang, Zhenghai Tang, Yilin Xiao, Dong Wang, Baochun Guo, Liqun Zhang\",\"doi\":\"10.1016/j.compscitech.2024.110964\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Creating segregated structure within composites can significantly improve electrical conductivity but usually compromises mechanical properties. In this contribution, we introduced a straightforward and universal method to fabricate segregated rubber composites with a rare integration of high electrical conductivity and mechanical robustness by utilizing an inverse vulcanized copolymer (SP) as an adhesive to bind the segregated domains. Specifically, sulfur-crosslinked butadiene styrene rubber (SBR) granules were mixed with SP and carbon nanotubes (CNTs), followed by compression molding. CNTs embedded within SP are strategically dispersed along the boundaries of SBR granules, and the reaction of SP with SBR granules creates covalent bonding among the segregated domains and increases their crosslinking density. The segregated skeleton constituted by highly interconnected CNTs is robust, which imparts the composites with high electrical conductivity that is stable upon deformations and is able to heal after damage. In addition, the rigid segregated skeleton preferentially ruptures to dissipate enormous energy, and the cohesive interphase facilitates chain finite extensibility in the highly crosslinked segregated domains, resulting in remarkable enhancements on the tensile strength and modulus of the composites. The universality of this strategy is further demonstrated by using ground waste tyre rubber as matrix and boron nitride sheets as filler.</div></div>\",\"PeriodicalId\":283,\"journal\":{\"name\":\"Composites Science and Technology\",\"volume\":\"260 \",\"pages\":\"Article 110964\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composites Science and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0266353824005347\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266353824005347","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
Sulfur Co-polymer as a universal adhesive to construct segregated structure in cross-linked rubber toward improved conductive and mechanical properties
Creating segregated structure within composites can significantly improve electrical conductivity but usually compromises mechanical properties. In this contribution, we introduced a straightforward and universal method to fabricate segregated rubber composites with a rare integration of high electrical conductivity and mechanical robustness by utilizing an inverse vulcanized copolymer (SP) as an adhesive to bind the segregated domains. Specifically, sulfur-crosslinked butadiene styrene rubber (SBR) granules were mixed with SP and carbon nanotubes (CNTs), followed by compression molding. CNTs embedded within SP are strategically dispersed along the boundaries of SBR granules, and the reaction of SP with SBR granules creates covalent bonding among the segregated domains and increases their crosslinking density. The segregated skeleton constituted by highly interconnected CNTs is robust, which imparts the composites with high electrical conductivity that is stable upon deformations and is able to heal after damage. In addition, the rigid segregated skeleton preferentially ruptures to dissipate enormous energy, and the cohesive interphase facilitates chain finite extensibility in the highly crosslinked segregated domains, resulting in remarkable enhancements on the tensile strength and modulus of the composites. The universality of this strategy is further demonstrated by using ground waste tyre rubber as matrix and boron nitride sheets as filler.
期刊介绍:
Composites Science and Technology publishes refereed original articles on the fundamental and applied science of engineering composites. The focus of this journal is on polymeric matrix composites with reinforcements/fillers ranging from nano- to macro-scale. CSTE encourages manuscripts reporting unique, innovative contributions to the physics, chemistry, materials science and applied mechanics aspects of advanced composites.
Besides traditional fiber reinforced composites, novel composites with significant potential for engineering applications are encouraged.