Paul Wetzel , Benjamin Schneider , Anna Katharina Sambale , Markus Stommel , Jan-Martin Kaiser
{"title":"短纤维增强聚酰胺的 RVE 模拟:根据半结晶聚合物结构确定直接和反向基体参数","authors":"Paul Wetzel , Benjamin Schneider , Anna Katharina Sambale , Markus Stommel , Jan-Martin Kaiser","doi":"10.1016/j.compscitech.2024.110961","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates the modeling capabilities of computational homogenization for the mechanical behavior of short fiber reinforced polyamide. Simulations on a representative volume element (RVE) with elastic fibers and an elastic–plastic matrix are compared to tensile experiments on specimens taken in parallel and transversal direction from injection molded plates. In view of the semi-crystalline polymer structure, focus is put on identifying the matrix parameters through two alternative methods:</div><div>First, the matrix parameters are identified directly using tensile experiments on a non-nucleated and a nucleated unreinforced polyamide. In the RVE computations based on the non-nucleated grade, the composite stress–strain behavior is somewhat underestimated, and with the nucleated grade, the behavior is slightly overestimated. To explain this, the semi-crystalline polymer structure is studied. Polarized light microscopy images reveal that the non-nucleated grade has a coarser and the nucleated grade a finer spherulite structure, compared to the matrix present in the composite. However, the degree of crystallinity measured by differential scanning calorimetry is in a similar range.</div><div>As an alternative, the matrix parameters are identified inversely by fitting the RVE model to the composite tensile experiments. As uncertainties with respect to the matrix material as well as possibly remaining simplifications in the micromechanical model are compensated for, this reverse engineering approach allows for a very good fit.</div></div>","PeriodicalId":283,"journal":{"name":"Composites Science and Technology","volume":"260 ","pages":"Article 110961"},"PeriodicalIF":8.3000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RVE Simulations of short fiber reinforced polyamide: Direct and inverse matrix parameter identification in view of the semi-crystalline polymer structure\",\"authors\":\"Paul Wetzel , Benjamin Schneider , Anna Katharina Sambale , Markus Stommel , Jan-Martin Kaiser\",\"doi\":\"10.1016/j.compscitech.2024.110961\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper investigates the modeling capabilities of computational homogenization for the mechanical behavior of short fiber reinforced polyamide. Simulations on a representative volume element (RVE) with elastic fibers and an elastic–plastic matrix are compared to tensile experiments on specimens taken in parallel and transversal direction from injection molded plates. In view of the semi-crystalline polymer structure, focus is put on identifying the matrix parameters through two alternative methods:</div><div>First, the matrix parameters are identified directly using tensile experiments on a non-nucleated and a nucleated unreinforced polyamide. In the RVE computations based on the non-nucleated grade, the composite stress–strain behavior is somewhat underestimated, and with the nucleated grade, the behavior is slightly overestimated. To explain this, the semi-crystalline polymer structure is studied. Polarized light microscopy images reveal that the non-nucleated grade has a coarser and the nucleated grade a finer spherulite structure, compared to the matrix present in the composite. However, the degree of crystallinity measured by differential scanning calorimetry is in a similar range.</div><div>As an alternative, the matrix parameters are identified inversely by fitting the RVE model to the composite tensile experiments. As uncertainties with respect to the matrix material as well as possibly remaining simplifications in the micromechanical model are compensated for, this reverse engineering approach allows for a very good fit.</div></div>\",\"PeriodicalId\":283,\"journal\":{\"name\":\"Composites Science and Technology\",\"volume\":\"260 \",\"pages\":\"Article 110961\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composites Science and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0266353824005311\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266353824005311","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
RVE Simulations of short fiber reinforced polyamide: Direct and inverse matrix parameter identification in view of the semi-crystalline polymer structure
This paper investigates the modeling capabilities of computational homogenization for the mechanical behavior of short fiber reinforced polyamide. Simulations on a representative volume element (RVE) with elastic fibers and an elastic–plastic matrix are compared to tensile experiments on specimens taken in parallel and transversal direction from injection molded plates. In view of the semi-crystalline polymer structure, focus is put on identifying the matrix parameters through two alternative methods:
First, the matrix parameters are identified directly using tensile experiments on a non-nucleated and a nucleated unreinforced polyamide. In the RVE computations based on the non-nucleated grade, the composite stress–strain behavior is somewhat underestimated, and with the nucleated grade, the behavior is slightly overestimated. To explain this, the semi-crystalline polymer structure is studied. Polarized light microscopy images reveal that the non-nucleated grade has a coarser and the nucleated grade a finer spherulite structure, compared to the matrix present in the composite. However, the degree of crystallinity measured by differential scanning calorimetry is in a similar range.
As an alternative, the matrix parameters are identified inversely by fitting the RVE model to the composite tensile experiments. As uncertainties with respect to the matrix material as well as possibly remaining simplifications in the micromechanical model are compensated for, this reverse engineering approach allows for a very good fit.
期刊介绍:
Composites Science and Technology publishes refereed original articles on the fundamental and applied science of engineering composites. The focus of this journal is on polymeric matrix composites with reinforcements/fillers ranging from nano- to macro-scale. CSTE encourages manuscripts reporting unique, innovative contributions to the physics, chemistry, materials science and applied mechanics aspects of advanced composites.
Besides traditional fiber reinforced composites, novel composites with significant potential for engineering applications are encouraged.