Shunran Hu , Qi Shao , Yongliang Chen , Jan Kammenga , Stefan Geisen
{"title":"加强轮作系统的多样化,诱导有益于植物的根瘤生物群,促进作物生长","authors":"Shunran Hu , Qi Shao , Yongliang Chen , Jan Kammenga , Stefan Geisen","doi":"10.1016/j.apsoil.2024.105758","DOIUrl":null,"url":null,"abstract":"<div><div>Diversified crop rotation systems play a key role in sustainable agricultural production by increasing crop diversity and reducing management intensity. Evidence is accumulating that this diversification shapes the root-associated bacteria and fungi – the rhizobiome. However, the intimate link and feedback between crop diversification and the rhizobiome remains poorly understood. Our aim was to understand rhizobiome (bacteria and fungi) changes induced by increased crop diversification in rotation systems in a long-term field experiment, and their functional feedback on crop performance in a pot experiment. We found that increased crop diversification shapes rhizobiome composition in favour of potential plant-beneficial rhizosphere microorganisms, e.g. increases <em>Podospora</em> by up to 97 %, with a simultaneous reduction of plant pathogens, e.g. decreases <em>Fusarium</em> by up to 89 %. These diversification-induced rhizobiome shifts lead to an enhanced maize growth of up to 156 % in the subsequent pot experiment. Our findings emphasise the pivotal role of increased crop diversification in shaping plant-beneficial rhizobiomes and verify the functional importances of these rhizobiomes in enhancing subsequent crop performance. Therefore, our research highlights that crop diversification in rotation systems is needed to sustainably promote crop performance in future agroecosystems.</div></div>","PeriodicalId":8099,"journal":{"name":"Applied Soil Ecology","volume":"205 ","pages":"Article 105758"},"PeriodicalIF":4.8000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Increased diversification of crop rotation systems induces plant-beneficial rhizobiomes to facilitate crop performance\",\"authors\":\"Shunran Hu , Qi Shao , Yongliang Chen , Jan Kammenga , Stefan Geisen\",\"doi\":\"10.1016/j.apsoil.2024.105758\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Diversified crop rotation systems play a key role in sustainable agricultural production by increasing crop diversity and reducing management intensity. Evidence is accumulating that this diversification shapes the root-associated bacteria and fungi – the rhizobiome. However, the intimate link and feedback between crop diversification and the rhizobiome remains poorly understood. Our aim was to understand rhizobiome (bacteria and fungi) changes induced by increased crop diversification in rotation systems in a long-term field experiment, and their functional feedback on crop performance in a pot experiment. We found that increased crop diversification shapes rhizobiome composition in favour of potential plant-beneficial rhizosphere microorganisms, e.g. increases <em>Podospora</em> by up to 97 %, with a simultaneous reduction of plant pathogens, e.g. decreases <em>Fusarium</em> by up to 89 %. These diversification-induced rhizobiome shifts lead to an enhanced maize growth of up to 156 % in the subsequent pot experiment. Our findings emphasise the pivotal role of increased crop diversification in shaping plant-beneficial rhizobiomes and verify the functional importances of these rhizobiomes in enhancing subsequent crop performance. Therefore, our research highlights that crop diversification in rotation systems is needed to sustainably promote crop performance in future agroecosystems.</div></div>\",\"PeriodicalId\":8099,\"journal\":{\"name\":\"Applied Soil Ecology\",\"volume\":\"205 \",\"pages\":\"Article 105758\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Soil Ecology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S092913932400489X\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOIL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Soil Ecology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092913932400489X","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
Increased diversification of crop rotation systems induces plant-beneficial rhizobiomes to facilitate crop performance
Diversified crop rotation systems play a key role in sustainable agricultural production by increasing crop diversity and reducing management intensity. Evidence is accumulating that this diversification shapes the root-associated bacteria and fungi – the rhizobiome. However, the intimate link and feedback between crop diversification and the rhizobiome remains poorly understood. Our aim was to understand rhizobiome (bacteria and fungi) changes induced by increased crop diversification in rotation systems in a long-term field experiment, and their functional feedback on crop performance in a pot experiment. We found that increased crop diversification shapes rhizobiome composition in favour of potential plant-beneficial rhizosphere microorganisms, e.g. increases Podospora by up to 97 %, with a simultaneous reduction of plant pathogens, e.g. decreases Fusarium by up to 89 %. These diversification-induced rhizobiome shifts lead to an enhanced maize growth of up to 156 % in the subsequent pot experiment. Our findings emphasise the pivotal role of increased crop diversification in shaping plant-beneficial rhizobiomes and verify the functional importances of these rhizobiomes in enhancing subsequent crop performance. Therefore, our research highlights that crop diversification in rotation systems is needed to sustainably promote crop performance in future agroecosystems.
期刊介绍:
Applied Soil Ecology addresses the role of soil organisms and their interactions in relation to: sustainability and productivity, nutrient cycling and other soil processes, the maintenance of soil functions, the impact of human activities on soil ecosystems and bio(techno)logical control of soil-inhabiting pests, diseases and weeds.