Yan Wang , Zhihe Xiao , Jian Gu , Weibin Sun , Junyang Jin , Xin Sun
{"title":"具有优异微波吸收性能的金属有机框架衍生核壳结构 C@TiC 纳米复合材料","authors":"Yan Wang , Zhihe Xiao , Jian Gu , Weibin Sun , Junyang Jin , Xin Sun","doi":"10.1016/j.oceram.2024.100700","DOIUrl":null,"url":null,"abstract":"<div><div>With aim to prepare nano-microwave absorption material with excellent microwave absorption performance, core-shell structured C@TiC nanocomposites with tunable nanostructures and morphologies were successfully synthesized through one-step pyrolysis of the Ti-based MOFs precursors at a low temperature. Effects of various metal/linker ratio, solvent types and Hacac addition on the microstructures and properties of the C@TiC nanocomposites were thoroughly investigated, demonstrating that the TiC core-C shell structure could be effectively tailored. Compared to pure TiC nanoparticles, the C@TiC nanocomposites exhibited significantly improved microwave absorption performance, including the stronger <em>RL</em> peak of -35.64 dB (10.72 GHz) at 2.4 mm thicknesses and the enhanced effective microwave wave absorption width (EAB, <em>RL</em>≤-10 dB) spanning the entire C-band and X-band, which is ascribed to the better impedance matching and richer microwave loss mechanisms. As a result, C@TiC nanocomposites show great potential to be applied as absorbers with strong microwave absorption and wide absorption bandwidth.</div></div>","PeriodicalId":34140,"journal":{"name":"Open Ceramics","volume":"20 ","pages":"Article 100700"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metal organic frameworks derived core-shell structured C@TiC nanocomposites with excellent microwave absorption performance\",\"authors\":\"Yan Wang , Zhihe Xiao , Jian Gu , Weibin Sun , Junyang Jin , Xin Sun\",\"doi\":\"10.1016/j.oceram.2024.100700\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>With aim to prepare nano-microwave absorption material with excellent microwave absorption performance, core-shell structured C@TiC nanocomposites with tunable nanostructures and morphologies were successfully synthesized through one-step pyrolysis of the Ti-based MOFs precursors at a low temperature. Effects of various metal/linker ratio, solvent types and Hacac addition on the microstructures and properties of the C@TiC nanocomposites were thoroughly investigated, demonstrating that the TiC core-C shell structure could be effectively tailored. Compared to pure TiC nanoparticles, the C@TiC nanocomposites exhibited significantly improved microwave absorption performance, including the stronger <em>RL</em> peak of -35.64 dB (10.72 GHz) at 2.4 mm thicknesses and the enhanced effective microwave wave absorption width (EAB, <em>RL</em>≤-10 dB) spanning the entire C-band and X-band, which is ascribed to the better impedance matching and richer microwave loss mechanisms. As a result, C@TiC nanocomposites show great potential to be applied as absorbers with strong microwave absorption and wide absorption bandwidth.</div></div>\",\"PeriodicalId\":34140,\"journal\":{\"name\":\"Open Ceramics\",\"volume\":\"20 \",\"pages\":\"Article 100700\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Ceramics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666539524001640\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Ceramics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666539524001640","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
摘要
为了制备具有优异微波吸收性能的纳米微波吸收材料,通过在低温下一步热解钛基MOFs前驱体,成功合成了具有可调纳米结构和形态的核壳结构C@TiC纳米复合材料。深入研究了不同金属/连接体比例、溶剂类型和 Hacac 添加量对 C@TiC 纳米复合材料微观结构和性能的影响,结果表明 TiC 核-壳结构可有效定制。与纯 TiC 纳米颗粒相比,C@TiC 纳米复合材料的微波吸收性能得到了显著改善,包括在厚度为 2.4 mm 时具有更强的 RL 峰值 -35.64 dB(10.72 GHz),有效微波吸收宽度(EAB,RL≤-10 dB)横跨整个 C 波段和 X 波段,这归因于更好的阻抗匹配和更丰富的微波损耗机制。因此,C@TiC 纳米复合材料在用作具有强微波吸收能力和宽吸收带宽的吸收体方面显示出巨大的应用潜力。
Metal organic frameworks derived core-shell structured C@TiC nanocomposites with excellent microwave absorption performance
With aim to prepare nano-microwave absorption material with excellent microwave absorption performance, core-shell structured C@TiC nanocomposites with tunable nanostructures and morphologies were successfully synthesized through one-step pyrolysis of the Ti-based MOFs precursors at a low temperature. Effects of various metal/linker ratio, solvent types and Hacac addition on the microstructures and properties of the C@TiC nanocomposites were thoroughly investigated, demonstrating that the TiC core-C shell structure could be effectively tailored. Compared to pure TiC nanoparticles, the C@TiC nanocomposites exhibited significantly improved microwave absorption performance, including the stronger RL peak of -35.64 dB (10.72 GHz) at 2.4 mm thicknesses and the enhanced effective microwave wave absorption width (EAB, RL≤-10 dB) spanning the entire C-band and X-band, which is ascribed to the better impedance matching and richer microwave loss mechanisms. As a result, C@TiC nanocomposites show great potential to be applied as absorbers with strong microwave absorption and wide absorption bandwidth.