{"title":"临界应变作为 SiCf/SiC 复合材料抗裂纹扩展的指标","authors":"Jinping Cui, Kang Guan, Pinggen Rao","doi":"10.1016/j.oceram.2024.100702","DOIUrl":null,"url":null,"abstract":"<div><div>Comprehensive research on crack propagation in SiC<sub>f</sub>/SiC composites is essential for understanding fracture mechanisms, enhancing toughening capabilities, extending service life in engineering applications, and driving new methodologies and theories in strength design. Despite their importance, the defect sensitivity and crack propagation resistance (CPR) of SiC<sub>f</sub>/SiC composites remain underexplored, with the influence of component parameters on CPR still unclear. Herein, we develop a novel approach and propose a new three-dimensional finite element model that incorporates varying interface layer thicknesses and randomly distributed fibers, using the single-edged pre-crack beam method. By introducing the critical strain parameter, the model quantitatively evaluates fracture energy and the effects of mesoscopic components on CPR. Our findings provide valuable insights into optimizing the mesoscopic components for enhanced toughness in SiC<sub>f</sub>/SiC composites.</div></div>","PeriodicalId":34140,"journal":{"name":"Open Ceramics","volume":"20 ","pages":"Article 100702"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Critical strain as a metric for crack propagation resistance in SiCf/SiC composites\",\"authors\":\"Jinping Cui, Kang Guan, Pinggen Rao\",\"doi\":\"10.1016/j.oceram.2024.100702\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Comprehensive research on crack propagation in SiC<sub>f</sub>/SiC composites is essential for understanding fracture mechanisms, enhancing toughening capabilities, extending service life in engineering applications, and driving new methodologies and theories in strength design. Despite their importance, the defect sensitivity and crack propagation resistance (CPR) of SiC<sub>f</sub>/SiC composites remain underexplored, with the influence of component parameters on CPR still unclear. Herein, we develop a novel approach and propose a new three-dimensional finite element model that incorporates varying interface layer thicknesses and randomly distributed fibers, using the single-edged pre-crack beam method. By introducing the critical strain parameter, the model quantitatively evaluates fracture energy and the effects of mesoscopic components on CPR. Our findings provide valuable insights into optimizing the mesoscopic components for enhanced toughness in SiC<sub>f</sub>/SiC composites.</div></div>\",\"PeriodicalId\":34140,\"journal\":{\"name\":\"Open Ceramics\",\"volume\":\"20 \",\"pages\":\"Article 100702\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Ceramics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666539524001664\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Ceramics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666539524001664","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
Critical strain as a metric for crack propagation resistance in SiCf/SiC composites
Comprehensive research on crack propagation in SiCf/SiC composites is essential for understanding fracture mechanisms, enhancing toughening capabilities, extending service life in engineering applications, and driving new methodologies and theories in strength design. Despite their importance, the defect sensitivity and crack propagation resistance (CPR) of SiCf/SiC composites remain underexplored, with the influence of component parameters on CPR still unclear. Herein, we develop a novel approach and propose a new three-dimensional finite element model that incorporates varying interface layer thicknesses and randomly distributed fibers, using the single-edged pre-crack beam method. By introducing the critical strain parameter, the model quantitatively evaluates fracture energy and the effects of mesoscopic components on CPR. Our findings provide valuable insights into optimizing the mesoscopic components for enhanced toughness in SiCf/SiC composites.