利用马群优化算法(HOA)的最佳参数选择,从图像特征对星系进行分类

IF 1.9 4区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS
Ahmadreza Yeganehmehr, Hossein Ebrahimnezhad
{"title":"利用马群优化算法(HOA)的最佳参数选择,从图像特征对星系进行分类","authors":"Ahmadreza Yeganehmehr,&nbsp;Hossein Ebrahimnezhad","doi":"10.1016/j.ascom.2024.100898","DOIUrl":null,"url":null,"abstract":"<div><div>With the advancement of observation technology, visual data has made significant progress, rendering manual image classification less effective. Consequently, various image processing and automatic classification methods have garnered attention from researchers. Scientists estimate that there are approximately 2 trillion observable galaxies in the universe. Each galaxy possesses unique characteristics that are distinguishable. Therefore, finding a method to quickly and accurately identify these characteristics of each galaxy and classify them rapidly can greatly enhance the galaxy detection and classification process, while minimizing human errors. The objective of the present study is to determine the class of galaxies with from telescope image features using an optimized classifier with best parameters. The proposed method uses the HOA algorithm, based on the behavior of horse herds, to find the best parameters. This method evaluates the model's error with different SVM parameters and selects the optimal SVM parameters for constructing M-SVM. Using this method, the proposed algorithm is trained and ultimately applied to classify the test data. The results indicate that the developed model correctly classified up to 94.11% of the test dataset (1) and 90.74% of the test dataset (2).</div></div>","PeriodicalId":48757,"journal":{"name":"Astronomy and Computing","volume":"50 ","pages":"Article 100898"},"PeriodicalIF":1.9000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classification of galaxies from image features using best parameter selection by horse herd optimization algorithm (HOA)\",\"authors\":\"Ahmadreza Yeganehmehr,&nbsp;Hossein Ebrahimnezhad\",\"doi\":\"10.1016/j.ascom.2024.100898\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>With the advancement of observation technology, visual data has made significant progress, rendering manual image classification less effective. Consequently, various image processing and automatic classification methods have garnered attention from researchers. Scientists estimate that there are approximately 2 trillion observable galaxies in the universe. Each galaxy possesses unique characteristics that are distinguishable. Therefore, finding a method to quickly and accurately identify these characteristics of each galaxy and classify them rapidly can greatly enhance the galaxy detection and classification process, while minimizing human errors. The objective of the present study is to determine the class of galaxies with from telescope image features using an optimized classifier with best parameters. The proposed method uses the HOA algorithm, based on the behavior of horse herds, to find the best parameters. This method evaluates the model's error with different SVM parameters and selects the optimal SVM parameters for constructing M-SVM. Using this method, the proposed algorithm is trained and ultimately applied to classify the test data. The results indicate that the developed model correctly classified up to 94.11% of the test dataset (1) and 90.74% of the test dataset (2).</div></div>\",\"PeriodicalId\":48757,\"journal\":{\"name\":\"Astronomy and Computing\",\"volume\":\"50 \",\"pages\":\"Article 100898\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astronomy and Computing\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213133724001136\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy and Computing","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213133724001136","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

随着观测技术的发展,视觉数据取得了长足的进步,人工图像分类的效果大打折扣。因此,各种图像处理和自动分类方法受到了研究人员的关注。科学家估计,宇宙中大约有 2 万亿个可观测星系。每个星系都具有可区分的独特特征。因此,找到一种方法来快速、准确地识别每个星系的这些特征,并对它们进行快速分类,可以大大提高星系探测和分类过程的效率,同时最大限度地减少人为误差。本研究的目的是利用最佳参数的优化分类器,根据望远镜图像特征确定星系类别。所提出的方法采用基于马群行为的 HOA 算法来寻找最佳参数。该方法评估了不同 SVM 参数下模型的误差,并选择最佳 SVM 参数来构建 M-SVM。利用这种方法,对提出的算法进行训练,并最终应用于测试数据的分类。结果表明,所开发的模型对测试数据集(1)的正确分类率高达 94.11%,对测试数据集(2)的正确分类率高达 90.74%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification of galaxies from image features using best parameter selection by horse herd optimization algorithm (HOA)
With the advancement of observation technology, visual data has made significant progress, rendering manual image classification less effective. Consequently, various image processing and automatic classification methods have garnered attention from researchers. Scientists estimate that there are approximately 2 trillion observable galaxies in the universe. Each galaxy possesses unique characteristics that are distinguishable. Therefore, finding a method to quickly and accurately identify these characteristics of each galaxy and classify them rapidly can greatly enhance the galaxy detection and classification process, while minimizing human errors. The objective of the present study is to determine the class of galaxies with from telescope image features using an optimized classifier with best parameters. The proposed method uses the HOA algorithm, based on the behavior of horse herds, to find the best parameters. This method evaluates the model's error with different SVM parameters and selects the optimal SVM parameters for constructing M-SVM. Using this method, the proposed algorithm is trained and ultimately applied to classify the test data. The results indicate that the developed model correctly classified up to 94.11% of the test dataset (1) and 90.74% of the test dataset (2).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Astronomy and Computing
Astronomy and Computing ASTRONOMY & ASTROPHYSICSCOMPUTER SCIENCE,-COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
CiteScore
4.10
自引率
8.00%
发文量
67
期刊介绍: Astronomy and Computing is a peer-reviewed journal that focuses on the broad area between astronomy, computer science and information technology. The journal aims to publish the work of scientists and (software) engineers in all aspects of astronomical computing, including the collection, analysis, reduction, visualisation, preservation and dissemination of data, and the development of astronomical software and simulations. The journal covers applications for academic computer science techniques to astronomy, as well as novel applications of information technologies within astronomy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信