{"title":"通过可操作性事件图式和领域自适应预培训增强危机信息提取能力","authors":"Yuhao Zhang, Siaw Ling Lo, Phyo Yi Win Myint","doi":"10.1016/j.im.2024.104065","DOIUrl":null,"url":null,"abstract":"<div><div>One of the persistent challenges in crisis detection is inferring actionable information to support emergency response. Existing methods focus on situational awareness but often lack actionable insights. This study proposes a holistic approach to implementing an actionability extraction system on social media, including requirement gathering, selection of machine learning tasks, data preparation, and integration with existing resources, providing guidance for governments, civil services, emergency workers, and researchers on supplementing existing channels with actionable information from social media. Our solution leverages an actionability schema and domain-adaptive pre-training, improving upon the state-of-the-art model by 5.5 % and 10.1 % in micro and macro F1 scores.</div></div>","PeriodicalId":56291,"journal":{"name":"Information & Management","volume":"62 1","pages":"Article 104065"},"PeriodicalIF":8.2000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Empowering crisis information extraction through actionability event schemata and domain-adaptive pre-training\",\"authors\":\"Yuhao Zhang, Siaw Ling Lo, Phyo Yi Win Myint\",\"doi\":\"10.1016/j.im.2024.104065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>One of the persistent challenges in crisis detection is inferring actionable information to support emergency response. Existing methods focus on situational awareness but often lack actionable insights. This study proposes a holistic approach to implementing an actionability extraction system on social media, including requirement gathering, selection of machine learning tasks, data preparation, and integration with existing resources, providing guidance for governments, civil services, emergency workers, and researchers on supplementing existing channels with actionable information from social media. Our solution leverages an actionability schema and domain-adaptive pre-training, improving upon the state-of-the-art model by 5.5 % and 10.1 % in micro and macro F1 scores.</div></div>\",\"PeriodicalId\":56291,\"journal\":{\"name\":\"Information & Management\",\"volume\":\"62 1\",\"pages\":\"Article 104065\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information & Management\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378720624001472\",\"RegionNum\":2,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information & Management","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378720624001472","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
摘要
危机检测的一个长期挑战是推断可操作的信息,以支持应急响应。现有方法侧重于态势感知,但往往缺乏可操作的见解。本研究提出了一种在社交媒体上实施可操作性提取系统的整体方法,包括需求收集、机器学习任务选择、数据准备以及与现有资源的整合,为政府、民政部门、应急工作者和研究人员从社交媒体中获取可操作信息以补充现有渠道提供指导。我们的解决方案利用可操作性模式和领域自适应预训练,在微观和宏观 F1 分数上分别比最先进的模型提高了 5.5% 和 10.1%。
Empowering crisis information extraction through actionability event schemata and domain-adaptive pre-training
One of the persistent challenges in crisis detection is inferring actionable information to support emergency response. Existing methods focus on situational awareness but often lack actionable insights. This study proposes a holistic approach to implementing an actionability extraction system on social media, including requirement gathering, selection of machine learning tasks, data preparation, and integration with existing resources, providing guidance for governments, civil services, emergency workers, and researchers on supplementing existing channels with actionable information from social media. Our solution leverages an actionability schema and domain-adaptive pre-training, improving upon the state-of-the-art model by 5.5 % and 10.1 % in micro and macro F1 scores.
期刊介绍:
Information & Management is a publication that caters to researchers in the field of information systems as well as managers, professionals, administrators, and senior executives involved in designing, implementing, and managing Information Systems Applications.