Xiaomai Yuan , Guichen Ban , Yibao Luo , Jinrong Wang , Dingjiao Peng , Run Liang , Tieguang He , Ziting Wang
{"title":"生物炭对粘土和壤土中不同大小团聚体的聚集和碳氮保留的影响:荟萃分析","authors":"Xiaomai Yuan , Guichen Ban , Yibao Luo , Jinrong Wang , Dingjiao Peng , Run Liang , Tieguang He , Ziting Wang","doi":"10.1016/j.still.2024.106365","DOIUrl":null,"url":null,"abstract":"<div><div>Biochar offers environmental benefits, such as enhanced soil aggregation and carbon sequestration. However, its effect on soil aggregation and organic carbon and nitrogen sequestration across soil textures remains unclear. In this systematic review, the results of 534 experiments reported in 100 peer-reviewed articles were analyzed. The results show that biochar addition enhances macroaggregate formation, improves aggregate water stability, and enriches organic carbon and nitrogen in different-sized aggregates compared with un-amended controls. When comparing clay and loam soils to biochar, clay soils respond more effectively to biochar than did loam soils. Specifically, the size distribution of clay aggregates responded to biochar input, whereas the organic carbon within different-sized aggregates of loam soil significantly increased. The benefits of biochar are attributed to the reduction in clay bulk density (−10.9 %) and the increase in microbial biomass carbon (+32.4 %), as well as enhanced organic matter input from plant biomass (+28.3 %) in loam. Long-term experiments (> 3 yr) revealed more macroaggregate-associated organic carbon in both loam and clay soils. Based on the results of this assessment, the optimal application conditions of biochar in loam and clay soils are as follows: in loam soils with initial organic carbon levels of 5–10 g·kg<sup>−1</sup>, biochar should be applied at a rate of 10–20 t·ha<sup>−1</sup> to maximize large macroaggregate formation; in clay soils, an application rate of 20–40 t·ha<sup>−1</sup> of biochar is recommended. Overall, biochar improves aggregate stability and carbon and nitrogen contents, with distinct responses in clay and loam soils.</div></div>","PeriodicalId":49503,"journal":{"name":"Soil & Tillage Research","volume":"247 ","pages":"Article 106365"},"PeriodicalIF":6.1000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biochar effects on aggregation and carbon-nitrogen retention in different-sized aggregates of clay and loam soils: A meta-analysis\",\"authors\":\"Xiaomai Yuan , Guichen Ban , Yibao Luo , Jinrong Wang , Dingjiao Peng , Run Liang , Tieguang He , Ziting Wang\",\"doi\":\"10.1016/j.still.2024.106365\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Biochar offers environmental benefits, such as enhanced soil aggregation and carbon sequestration. However, its effect on soil aggregation and organic carbon and nitrogen sequestration across soil textures remains unclear. In this systematic review, the results of 534 experiments reported in 100 peer-reviewed articles were analyzed. The results show that biochar addition enhances macroaggregate formation, improves aggregate water stability, and enriches organic carbon and nitrogen in different-sized aggregates compared with un-amended controls. When comparing clay and loam soils to biochar, clay soils respond more effectively to biochar than did loam soils. Specifically, the size distribution of clay aggregates responded to biochar input, whereas the organic carbon within different-sized aggregates of loam soil significantly increased. The benefits of biochar are attributed to the reduction in clay bulk density (−10.9 %) and the increase in microbial biomass carbon (+32.4 %), as well as enhanced organic matter input from plant biomass (+28.3 %) in loam. Long-term experiments (> 3 yr) revealed more macroaggregate-associated organic carbon in both loam and clay soils. Based on the results of this assessment, the optimal application conditions of biochar in loam and clay soils are as follows: in loam soils with initial organic carbon levels of 5–10 g·kg<sup>−1</sup>, biochar should be applied at a rate of 10–20 t·ha<sup>−1</sup> to maximize large macroaggregate formation; in clay soils, an application rate of 20–40 t·ha<sup>−1</sup> of biochar is recommended. Overall, biochar improves aggregate stability and carbon and nitrogen contents, with distinct responses in clay and loam soils.</div></div>\",\"PeriodicalId\":49503,\"journal\":{\"name\":\"Soil & Tillage Research\",\"volume\":\"247 \",\"pages\":\"Article 106365\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soil & Tillage Research\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167198724003660\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOIL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil & Tillage Research","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167198724003660","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
Biochar effects on aggregation and carbon-nitrogen retention in different-sized aggregates of clay and loam soils: A meta-analysis
Biochar offers environmental benefits, such as enhanced soil aggregation and carbon sequestration. However, its effect on soil aggregation and organic carbon and nitrogen sequestration across soil textures remains unclear. In this systematic review, the results of 534 experiments reported in 100 peer-reviewed articles were analyzed. The results show that biochar addition enhances macroaggregate formation, improves aggregate water stability, and enriches organic carbon and nitrogen in different-sized aggregates compared with un-amended controls. When comparing clay and loam soils to biochar, clay soils respond more effectively to biochar than did loam soils. Specifically, the size distribution of clay aggregates responded to biochar input, whereas the organic carbon within different-sized aggregates of loam soil significantly increased. The benefits of biochar are attributed to the reduction in clay bulk density (−10.9 %) and the increase in microbial biomass carbon (+32.4 %), as well as enhanced organic matter input from plant biomass (+28.3 %) in loam. Long-term experiments (> 3 yr) revealed more macroaggregate-associated organic carbon in both loam and clay soils. Based on the results of this assessment, the optimal application conditions of biochar in loam and clay soils are as follows: in loam soils with initial organic carbon levels of 5–10 g·kg−1, biochar should be applied at a rate of 10–20 t·ha−1 to maximize large macroaggregate formation; in clay soils, an application rate of 20–40 t·ha−1 of biochar is recommended. Overall, biochar improves aggregate stability and carbon and nitrogen contents, with distinct responses in clay and loam soils.
期刊介绍:
Soil & Tillage Research examines the physical, chemical and biological changes in the soil caused by tillage and field traffic. Manuscripts will be considered on aspects of soil science, physics, technology, mechanization and applied engineering for a sustainable balance among productivity, environmental quality and profitability. The following are examples of suitable topics within the scope of the journal of Soil and Tillage Research:
The agricultural and biosystems engineering associated with tillage (including no-tillage, reduced-tillage and direct drilling), irrigation and drainage, crops and crop rotations, fertilization, rehabilitation of mine spoils and processes used to modify soils. Soil change effects on establishment and yield of crops, growth of plants and roots, structure and erosion of soil, cycling of carbon and nutrients, greenhouse gas emissions, leaching, runoff and other processes that affect environmental quality. Characterization or modeling of tillage and field traffic responses, soil, climate, or topographic effects, soil deformation processes, tillage tools, traction devices, energy requirements, economics, surface and subsurface water quality effects, tillage effects on weed, pest and disease control, and their interactions.