Xueping Wang , Jiaxing Wang , Yurou Chu , Jipeng Sun , Ru Song , Bin Zhang
{"title":"整合多层次交互式网络分析和体内研究,探索鲣鱼胰蛋白酶水解产物对高尿酸血症的保护机制","authors":"Xueping Wang , Jiaxing Wang , Yurou Chu , Jipeng Sun , Ru Song , Bin Zhang","doi":"10.1016/j.jff.2024.106593","DOIUrl":null,"url":null,"abstract":"<div><div>This study used skipjack by-products to produce skipjack trypsin hydrolysate (STH), which was then processed through the Maillard reaction to create its Maillard product, STHMS3 (200–1000 Da). We evaluated STHMS3's protective effects against hyperuricemia-induced renal injury in mice. Utilizing in vivo experiments, network pharmacology, and molecular docking, we explored its protective mechanisms. STHMS3 significantly decreased serum uric acid, creatinine, blood urea nitrogen, and xanthine oxidase (XOD) levels, reduced oxidative stress, and enhanced antioxidant protein levels in kidneys. Network pharmacology analysis showed STHMS3's interaction with multiple targets and pathways, including apoptosis, NF-κB, and TNF signaling pathways, suggesting a multi-level interactive network mechanism. Molecular docking confirmed STHMS3's ability to directly inhibit XOD through hydrogen bond formation. This study highlights the therapeutic potential of food-derived peptides in managing hyperuricemia and protecting renal function.</div></div>","PeriodicalId":360,"journal":{"name":"Journal of Functional Foods","volume":"123 ","pages":"Article 106593"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrating multi-level interactive network analysis and in vivo studies to explore the protective mechanism of Maillard products of skipjack trypsin hydrolysate in hyperuricemia\",\"authors\":\"Xueping Wang , Jiaxing Wang , Yurou Chu , Jipeng Sun , Ru Song , Bin Zhang\",\"doi\":\"10.1016/j.jff.2024.106593\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study used skipjack by-products to produce skipjack trypsin hydrolysate (STH), which was then processed through the Maillard reaction to create its Maillard product, STHMS3 (200–1000 Da). We evaluated STHMS3's protective effects against hyperuricemia-induced renal injury in mice. Utilizing in vivo experiments, network pharmacology, and molecular docking, we explored its protective mechanisms. STHMS3 significantly decreased serum uric acid, creatinine, blood urea nitrogen, and xanthine oxidase (XOD) levels, reduced oxidative stress, and enhanced antioxidant protein levels in kidneys. Network pharmacology analysis showed STHMS3's interaction with multiple targets and pathways, including apoptosis, NF-κB, and TNF signaling pathways, suggesting a multi-level interactive network mechanism. Molecular docking confirmed STHMS3's ability to directly inhibit XOD through hydrogen bond formation. This study highlights the therapeutic potential of food-derived peptides in managing hyperuricemia and protecting renal function.</div></div>\",\"PeriodicalId\":360,\"journal\":{\"name\":\"Journal of Functional Foods\",\"volume\":\"123 \",\"pages\":\"Article 106593\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Foods\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1756464624005966\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Foods","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1756464624005966","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Integrating multi-level interactive network analysis and in vivo studies to explore the protective mechanism of Maillard products of skipjack trypsin hydrolysate in hyperuricemia
This study used skipjack by-products to produce skipjack trypsin hydrolysate (STH), which was then processed through the Maillard reaction to create its Maillard product, STHMS3 (200–1000 Da). We evaluated STHMS3's protective effects against hyperuricemia-induced renal injury in mice. Utilizing in vivo experiments, network pharmacology, and molecular docking, we explored its protective mechanisms. STHMS3 significantly decreased serum uric acid, creatinine, blood urea nitrogen, and xanthine oxidase (XOD) levels, reduced oxidative stress, and enhanced antioxidant protein levels in kidneys. Network pharmacology analysis showed STHMS3's interaction with multiple targets and pathways, including apoptosis, NF-κB, and TNF signaling pathways, suggesting a multi-level interactive network mechanism. Molecular docking confirmed STHMS3's ability to directly inhibit XOD through hydrogen bond formation. This study highlights the therapeutic potential of food-derived peptides in managing hyperuricemia and protecting renal function.
期刊介绍:
Journal of Functional Foods continues with the same aims and scope, editorial team, submission system and rigorous peer review. We give authors the possibility to publish their top-quality papers in a well-established leading journal in the food and nutrition fields. The Journal will keep its rigorous criteria to screen high impact research addressing relevant scientific topics and performed by sound methodologies.
The Journal of Functional Foods aims to bring together the results of fundamental and applied research into healthy foods and biologically active food ingredients.
The Journal is centered in the specific area at the boundaries among food technology, nutrition and health welcoming papers having a good interdisciplinary approach. The Journal will cover the fields of plant bioactives; dietary fibre, probiotics; functional lipids; bioactive peptides; vitamins, minerals and botanicals and other dietary supplements. Nutritional and technological aspects related to the development of functional foods and beverages are of core interest to the journal. Experimental works dealing with food digestion, bioavailability of food bioactives and on the mechanisms by which foods and their components are able to modulate physiological parameters connected with disease prevention are of particular interest as well as those dealing with personalized nutrition and nutritional needs in pathological subjects.