{"title":"2-(v,k,2)旗转设计的分类","authors":"Hongxue Liang , Alessandro Montinaro","doi":"10.1016/j.jcta.2024.105983","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we provide a complete classification of 2-<span><math><mo>(</mo><mi>v</mi><mo>,</mo><mi>k</mi><mo>,</mo><mn>2</mn><mo>)</mo></math></span> designs admitting a flag-transitive automorphism group of affine type with the only exception of the semilinear 1-dimensional group. Alongside this analysis, we provide a construction of seven new families of such flag-transitive 2-designs, one of them infinite, and some of them involving remarkable objects such as <em>t</em>-spreads, translation planes, quadrics and Segre varieties.</div><div>Our result together with those of Alavi et al. <span><span>[1]</span></span>, <span><span>[2]</span></span>, Praeger et al. <span><span>[17]</span></span>, Zhou and the first author <span><span>[39]</span></span>, <span><span>[40]</span></span> provides a complete classification of 2-<span><math><mo>(</mo><mi>v</mi><mo>,</mo><mi>k</mi><mo>,</mo><mn>2</mn><mo>)</mo></math></span> design admitting a flag-transitive automorphism group with the only exception of the semilinear 1-dimensional case.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"211 ","pages":"Article 105983"},"PeriodicalIF":0.9000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A classification of the flag-transitive 2-(v,k,2) designs\",\"authors\":\"Hongxue Liang , Alessandro Montinaro\",\"doi\":\"10.1016/j.jcta.2024.105983\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we provide a complete classification of 2-<span><math><mo>(</mo><mi>v</mi><mo>,</mo><mi>k</mi><mo>,</mo><mn>2</mn><mo>)</mo></math></span> designs admitting a flag-transitive automorphism group of affine type with the only exception of the semilinear 1-dimensional group. Alongside this analysis, we provide a construction of seven new families of such flag-transitive 2-designs, one of them infinite, and some of them involving remarkable objects such as <em>t</em>-spreads, translation planes, quadrics and Segre varieties.</div><div>Our result together with those of Alavi et al. <span><span>[1]</span></span>, <span><span>[2]</span></span>, Praeger et al. <span><span>[17]</span></span>, Zhou and the first author <span><span>[39]</span></span>, <span><span>[40]</span></span> provides a complete classification of 2-<span><math><mo>(</mo><mi>v</mi><mo>,</mo><mi>k</mi><mo>,</mo><mn>2</mn><mo>)</mo></math></span> design admitting a flag-transitive automorphism group with the only exception of the semilinear 1-dimensional case.</div></div>\",\"PeriodicalId\":50230,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series A\",\"volume\":\"211 \",\"pages\":\"Article 105983\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series A\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0097316524001225\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316524001225","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
A classification of the flag-transitive 2-(v,k,2) designs
In this paper, we provide a complete classification of 2- designs admitting a flag-transitive automorphism group of affine type with the only exception of the semilinear 1-dimensional group. Alongside this analysis, we provide a construction of seven new families of such flag-transitive 2-designs, one of them infinite, and some of them involving remarkable objects such as t-spreads, translation planes, quadrics and Segre varieties.
Our result together with those of Alavi et al. [1], [2], Praeger et al. [17], Zhou and the first author [39], [40] provides a complete classification of 2- design admitting a flag-transitive automorphism group with the only exception of the semilinear 1-dimensional case.
期刊介绍:
The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.