2-(v,k,2)旗转设计的分类

IF 0.9 2区 数学 Q2 MATHEMATICS
Hongxue Liang , Alessandro Montinaro
{"title":"2-(v,k,2)旗转设计的分类","authors":"Hongxue Liang ,&nbsp;Alessandro Montinaro","doi":"10.1016/j.jcta.2024.105983","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we provide a complete classification of 2-<span><math><mo>(</mo><mi>v</mi><mo>,</mo><mi>k</mi><mo>,</mo><mn>2</mn><mo>)</mo></math></span> designs admitting a flag-transitive automorphism group of affine type with the only exception of the semilinear 1-dimensional group. Alongside this analysis, we provide a construction of seven new families of such flag-transitive 2-designs, one of them infinite, and some of them involving remarkable objects such as <em>t</em>-spreads, translation planes, quadrics and Segre varieties.</div><div>Our result together with those of Alavi et al. <span><span>[1]</span></span>, <span><span>[2]</span></span>, Praeger et al. <span><span>[17]</span></span>, Zhou and the first author <span><span>[39]</span></span>, <span><span>[40]</span></span> provides a complete classification of 2-<span><math><mo>(</mo><mi>v</mi><mo>,</mo><mi>k</mi><mo>,</mo><mn>2</mn><mo>)</mo></math></span> design admitting a flag-transitive automorphism group with the only exception of the semilinear 1-dimensional case.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"211 ","pages":"Article 105983"},"PeriodicalIF":0.9000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A classification of the flag-transitive 2-(v,k,2) designs\",\"authors\":\"Hongxue Liang ,&nbsp;Alessandro Montinaro\",\"doi\":\"10.1016/j.jcta.2024.105983\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we provide a complete classification of 2-<span><math><mo>(</mo><mi>v</mi><mo>,</mo><mi>k</mi><mo>,</mo><mn>2</mn><mo>)</mo></math></span> designs admitting a flag-transitive automorphism group of affine type with the only exception of the semilinear 1-dimensional group. Alongside this analysis, we provide a construction of seven new families of such flag-transitive 2-designs, one of them infinite, and some of them involving remarkable objects such as <em>t</em>-spreads, translation planes, quadrics and Segre varieties.</div><div>Our result together with those of Alavi et al. <span><span>[1]</span></span>, <span><span>[2]</span></span>, Praeger et al. <span><span>[17]</span></span>, Zhou and the first author <span><span>[39]</span></span>, <span><span>[40]</span></span> provides a complete classification of 2-<span><math><mo>(</mo><mi>v</mi><mo>,</mo><mi>k</mi><mo>,</mo><mn>2</mn><mo>)</mo></math></span> design admitting a flag-transitive automorphism group with the only exception of the semilinear 1-dimensional case.</div></div>\",\"PeriodicalId\":50230,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series A\",\"volume\":\"211 \",\"pages\":\"Article 105983\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series A\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0097316524001225\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316524001225","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提供了一个完整的 2-(v,k,2)设计分类,这些设计允许一个仿射类型的旗透式自变群,唯一的例外是半线性一维群。在进行分析的同时,我们还构建了七个新的旗透式 2-设计族,其中一个是无限设计族,其中一些设计族涉及诸如 t 展开、平移平面、四边形和 Segre varieties 等非凡对象。我们的结果与 Alavi 等人[1], [2], Praeger 等人[17], Zhou 和第一作者[39], [40]的结果一起,提供了一个完整的 2-(v,k,2) 设计的分类,其中只有半线性一维情况例外。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A classification of the flag-transitive 2-(v,k,2) designs
In this paper, we provide a complete classification of 2-(v,k,2) designs admitting a flag-transitive automorphism group of affine type with the only exception of the semilinear 1-dimensional group. Alongside this analysis, we provide a construction of seven new families of such flag-transitive 2-designs, one of them infinite, and some of them involving remarkable objects such as t-spreads, translation planes, quadrics and Segre varieties.
Our result together with those of Alavi et al. [1], [2], Praeger et al. [17], Zhou and the first author [39], [40] provides a complete classification of 2-(v,k,2) design admitting a flag-transitive automorphism group with the only exception of the semilinear 1-dimensional case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
9.10%
发文量
94
审稿时长
12 months
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信