Sujan Ghimire , Ravinesh C. Deo , David Casillas-Pérez , Sancho Salcedo-Sanz , Rajendra Acharya , Toan Dinh
{"title":"利用时态卷积神经网络模型建立电力需求不确定性模型","authors":"Sujan Ghimire , Ravinesh C. Deo , David Casillas-Pérez , Sancho Salcedo-Sanz , Rajendra Acharya , Toan Dinh","doi":"10.1016/j.rser.2024.115097","DOIUrl":null,"url":null,"abstract":"<div><div>This work presents a Temporal Convolution Network (TCN) model for half-hourly, three-hourly and daily-time step to predict electricity demand (<span><math><mi>G</mi></math></span>) with associated uncertainties for sites in Southeast Queensland Australia. In addition to multi-step predictions, the TCN model is applied for probabilistic predictions of <span><math><mi>G</mi></math></span> where the aleatoric and epistemic uncertainties are quantified using maximum likelihood and Monte Carlo Dropout methodologies. The benchmarks of TCN model include an attention-based, bi-directional, gated recurrent unit, seq2seq, encoder–decoder, recurrent neural networks and natural gradient boosting models. The testing results show that the proposed TCN model attains the lowest relative root mean square error of 5.336-7.547% compared with significantly larger errors for all benchmark models. In respect to the 95% confidence interval using the Diebold–Mariano test statistic and key performance metrics, the proposed TCN model is better than benchmark models, capturing a lower value of total uncertainty, as well as the aleatoric and epistemic uncertainty. The root mean square error and total uncertainty registered for all of the forecast horizons shows that the benchmark models registered relatively larger errors arising from the epistemic uncertainty in predicted electricity demand. The results obtained for TCN, measured by the quality of prediction intervals representing an interval with upper and lower bound errors, registered a greater reliability factor as this model was likely to produce prediction interval that were higher than benchmark models at all prediction intervals. These results demonstrate the effectiveness of TCN approach in electricity demand modelling, and therefore advocates its usefulness in now-casting and forecasting systems.</div></div>","PeriodicalId":418,"journal":{"name":"Renewable and Sustainable Energy Reviews","volume":"209 ","pages":"Article 115097"},"PeriodicalIF":16.3000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electricity demand uncertainty modeling with Temporal Convolution Neural Network models\",\"authors\":\"Sujan Ghimire , Ravinesh C. Deo , David Casillas-Pérez , Sancho Salcedo-Sanz , Rajendra Acharya , Toan Dinh\",\"doi\":\"10.1016/j.rser.2024.115097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This work presents a Temporal Convolution Network (TCN) model for half-hourly, three-hourly and daily-time step to predict electricity demand (<span><math><mi>G</mi></math></span>) with associated uncertainties for sites in Southeast Queensland Australia. In addition to multi-step predictions, the TCN model is applied for probabilistic predictions of <span><math><mi>G</mi></math></span> where the aleatoric and epistemic uncertainties are quantified using maximum likelihood and Monte Carlo Dropout methodologies. The benchmarks of TCN model include an attention-based, bi-directional, gated recurrent unit, seq2seq, encoder–decoder, recurrent neural networks and natural gradient boosting models. The testing results show that the proposed TCN model attains the lowest relative root mean square error of 5.336-7.547% compared with significantly larger errors for all benchmark models. In respect to the 95% confidence interval using the Diebold–Mariano test statistic and key performance metrics, the proposed TCN model is better than benchmark models, capturing a lower value of total uncertainty, as well as the aleatoric and epistemic uncertainty. The root mean square error and total uncertainty registered for all of the forecast horizons shows that the benchmark models registered relatively larger errors arising from the epistemic uncertainty in predicted electricity demand. The results obtained for TCN, measured by the quality of prediction intervals representing an interval with upper and lower bound errors, registered a greater reliability factor as this model was likely to produce prediction interval that were higher than benchmark models at all prediction intervals. These results demonstrate the effectiveness of TCN approach in electricity demand modelling, and therefore advocates its usefulness in now-casting and forecasting systems.</div></div>\",\"PeriodicalId\":418,\"journal\":{\"name\":\"Renewable and Sustainable Energy Reviews\",\"volume\":\"209 \",\"pages\":\"Article 115097\"},\"PeriodicalIF\":16.3000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Renewable and Sustainable Energy Reviews\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1364032124008232\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable and Sustainable Energy Reviews","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364032124008232","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Electricity demand uncertainty modeling with Temporal Convolution Neural Network models
This work presents a Temporal Convolution Network (TCN) model for half-hourly, three-hourly and daily-time step to predict electricity demand () with associated uncertainties for sites in Southeast Queensland Australia. In addition to multi-step predictions, the TCN model is applied for probabilistic predictions of where the aleatoric and epistemic uncertainties are quantified using maximum likelihood and Monte Carlo Dropout methodologies. The benchmarks of TCN model include an attention-based, bi-directional, gated recurrent unit, seq2seq, encoder–decoder, recurrent neural networks and natural gradient boosting models. The testing results show that the proposed TCN model attains the lowest relative root mean square error of 5.336-7.547% compared with significantly larger errors for all benchmark models. In respect to the 95% confidence interval using the Diebold–Mariano test statistic and key performance metrics, the proposed TCN model is better than benchmark models, capturing a lower value of total uncertainty, as well as the aleatoric and epistemic uncertainty. The root mean square error and total uncertainty registered for all of the forecast horizons shows that the benchmark models registered relatively larger errors arising from the epistemic uncertainty in predicted electricity demand. The results obtained for TCN, measured by the quality of prediction intervals representing an interval with upper and lower bound errors, registered a greater reliability factor as this model was likely to produce prediction interval that were higher than benchmark models at all prediction intervals. These results demonstrate the effectiveness of TCN approach in electricity demand modelling, and therefore advocates its usefulness in now-casting and forecasting systems.
期刊介绍:
The mission of Renewable and Sustainable Energy Reviews is to disseminate the most compelling and pertinent critical insights in renewable and sustainable energy, fostering collaboration among the research community, private sector, and policy and decision makers. The journal aims to exchange challenges, solutions, innovative concepts, and technologies, contributing to sustainable development, the transition to a low-carbon future, and the attainment of emissions targets outlined by the United Nations Framework Convention on Climate Change.
Renewable and Sustainable Energy Reviews publishes a diverse range of content, including review papers, original research, case studies, and analyses of new technologies, all featuring a substantial review component such as critique, comparison, or analysis. Introducing a distinctive paper type, Expert Insights, the journal presents commissioned mini-reviews authored by field leaders, addressing topics of significant interest. Case studies undergo consideration only if they showcase the work's applicability to other regions or contribute valuable insights to the broader field of renewable and sustainable energy. Notably, a bibliographic or literature review lacking critical analysis is deemed unsuitable for publication.