{"title":"通过综合通道形状变化提高双斜面太阳能蒸发器性能:实验和数值模拟研究","authors":"Thavamani Jeyaraj, Pankaj Kumar, Shaswat Pathak","doi":"10.1016/j.rser.2024.115106","DOIUrl":null,"url":null,"abstract":"<div><div>The solar still system effectively addresses water scarcity concerns by adopting suitable methods for enhancing yields. Incorporating a preheating system, such as channels within solar still leads to an increased yield from the conversion of saline water. This research integrates various channel shapes (square, rectangular, triangular, and trapezoidal) into double-slope solar stills (DSSS) and their internal properties using numerical simulation and experimental processes under similar climatic conditions. A three-dimensional, multi-phase computational fluid dynamics (CFD) model of solar still was developed using Ansys Fluent 18.1 to compare simulation results with experimental data under the atmospheric conditions of Chengalpattu. The simulation predicted a maximum water yield of 0.44 kg/m<sup>2</sup>/h, while experimental data showed a peak yield of 0.41 kg/m<sup>2</sup>/h between 1 p.m. and 2 p.m. There is a 6.82 % variation between the simulations and the experiments. According to the experimental results, the modified system shows a maximum variation of 8.13 % in influence parameter; the yield rate differences for the square, rectangular, triangular, and trapezoidal channels are 8.13, 7.24, 6.73, and 6.52 %, respectively. Trapezoidal channels are superior to other shapes due to their large evaporation capacity, higher wall temperatures due to increased solar absorption area, and superior base resistance. The simulation further explains the heat and mass transfer mechanics into the channel due to resistance from the feed water surface. The research suggests that varying channel shapes inside solar still enhance evaporation and yield rates compared to DSSS systems.</div></div>","PeriodicalId":418,"journal":{"name":"Renewable and Sustainable Energy Reviews","volume":"209 ","pages":"Article 115106"},"PeriodicalIF":16.3000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing double-slope solar still performance through integrated channel shape variations: An experimental and numerical simulation investigation\",\"authors\":\"Thavamani Jeyaraj, Pankaj Kumar, Shaswat Pathak\",\"doi\":\"10.1016/j.rser.2024.115106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The solar still system effectively addresses water scarcity concerns by adopting suitable methods for enhancing yields. Incorporating a preheating system, such as channels within solar still leads to an increased yield from the conversion of saline water. This research integrates various channel shapes (square, rectangular, triangular, and trapezoidal) into double-slope solar stills (DSSS) and their internal properties using numerical simulation and experimental processes under similar climatic conditions. A three-dimensional, multi-phase computational fluid dynamics (CFD) model of solar still was developed using Ansys Fluent 18.1 to compare simulation results with experimental data under the atmospheric conditions of Chengalpattu. The simulation predicted a maximum water yield of 0.44 kg/m<sup>2</sup>/h, while experimental data showed a peak yield of 0.41 kg/m<sup>2</sup>/h between 1 p.m. and 2 p.m. There is a 6.82 % variation between the simulations and the experiments. According to the experimental results, the modified system shows a maximum variation of 8.13 % in influence parameter; the yield rate differences for the square, rectangular, triangular, and trapezoidal channels are 8.13, 7.24, 6.73, and 6.52 %, respectively. Trapezoidal channels are superior to other shapes due to their large evaporation capacity, higher wall temperatures due to increased solar absorption area, and superior base resistance. The simulation further explains the heat and mass transfer mechanics into the channel due to resistance from the feed water surface. The research suggests that varying channel shapes inside solar still enhance evaporation and yield rates compared to DSSS systems.</div></div>\",\"PeriodicalId\":418,\"journal\":{\"name\":\"Renewable and Sustainable Energy Reviews\",\"volume\":\"209 \",\"pages\":\"Article 115106\"},\"PeriodicalIF\":16.3000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Renewable and Sustainable Energy Reviews\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1364032124008323\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable and Sustainable Energy Reviews","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364032124008323","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Enhancing double-slope solar still performance through integrated channel shape variations: An experimental and numerical simulation investigation
The solar still system effectively addresses water scarcity concerns by adopting suitable methods for enhancing yields. Incorporating a preheating system, such as channels within solar still leads to an increased yield from the conversion of saline water. This research integrates various channel shapes (square, rectangular, triangular, and trapezoidal) into double-slope solar stills (DSSS) and their internal properties using numerical simulation and experimental processes under similar climatic conditions. A three-dimensional, multi-phase computational fluid dynamics (CFD) model of solar still was developed using Ansys Fluent 18.1 to compare simulation results with experimental data under the atmospheric conditions of Chengalpattu. The simulation predicted a maximum water yield of 0.44 kg/m2/h, while experimental data showed a peak yield of 0.41 kg/m2/h between 1 p.m. and 2 p.m. There is a 6.82 % variation between the simulations and the experiments. According to the experimental results, the modified system shows a maximum variation of 8.13 % in influence parameter; the yield rate differences for the square, rectangular, triangular, and trapezoidal channels are 8.13, 7.24, 6.73, and 6.52 %, respectively. Trapezoidal channels are superior to other shapes due to their large evaporation capacity, higher wall temperatures due to increased solar absorption area, and superior base resistance. The simulation further explains the heat and mass transfer mechanics into the channel due to resistance from the feed water surface. The research suggests that varying channel shapes inside solar still enhance evaporation and yield rates compared to DSSS systems.
期刊介绍:
The mission of Renewable and Sustainable Energy Reviews is to disseminate the most compelling and pertinent critical insights in renewable and sustainable energy, fostering collaboration among the research community, private sector, and policy and decision makers. The journal aims to exchange challenges, solutions, innovative concepts, and technologies, contributing to sustainable development, the transition to a low-carbon future, and the attainment of emissions targets outlined by the United Nations Framework Convention on Climate Change.
Renewable and Sustainable Energy Reviews publishes a diverse range of content, including review papers, original research, case studies, and analyses of new technologies, all featuring a substantial review component such as critique, comparison, or analysis. Introducing a distinctive paper type, Expert Insights, the journal presents commissioned mini-reviews authored by field leaders, addressing topics of significant interest. Case studies undergo consideration only if they showcase the work's applicability to other regions or contribute valuable insights to the broader field of renewable and sustainable energy. Notably, a bibliographic or literature review lacking critical analysis is deemed unsuitable for publication.